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CONTINUOUS WELCH BOUNDS WITH APPLICATIONS

Krishnanagara Mahesh Krishna

Abstract. Let (Ω, µ) be a measure space and {τα}α∈Ω be a normalized

continuous Bessel family for a finite dimensional Hilbert space H of di-
mension d. If the diagonal ∆ := {(α, α) : α ∈ Ω} is measurable in the

measure space Ω× Ω, then we show that

sup
α,β∈Ω,α̸=β

|⟨τα, τβ⟩|2m

≥
1

(µ× µ)((Ω× Ω) \∆)

[
µ(Ω)2(d+m−1

m

) − (µ× µ)(∆)

]
, ∀m ∈ N.

This improves 48 years old celebrated result of Welch [41]. We introduce

the notions of continuous cross correlation and frame potential of Bessel
family and give applications of continuous Welch bounds to these con-

cepts. We also introduce the notion of continuous Grassmannian frames.

1. Introduction

In 1974, L. Welch proved the following milestone result which revolutioned
the study of finite set of vectors in finite dimensional Hilbert spaces.

Theorem 1.1 ([41], Welch bounds). Let n ≥ d. If {τj}nj=1 is any collection of

unit vectors in Cd, then

n∑
j=1

n∑
k=1

|⟨τj , τk⟩|2m ≥ n2(
d+m−1

m

) , ∀m ∈ N.

In particular,

n∑
j=1

n∑
k=1

|⟨τj , τk⟩|2 ≥ n2

d
.
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Further, (Higher order Welch bounds)

max
1≤j,k≤n,j ̸=k

|⟨τj , τk⟩|2m ≥ 1

n− 1

[
n(

d+m−1
m

) − 1

]
, ∀m ∈ N.(1)

In particular, (First order Welch bound)

max
1≤j,k≤n,j ̸=k

|⟨τj , τk⟩|2 ≥ n− d

d(n− 1)
.

A very powerful application of Welch bounds is the lower bound on root-
mean-square (RMS) absolute cross relation of unit vectors {τj}nj=1 which is
defined as

IRMS({τj}nj=1) :=

 1

n(n− 1)

∑
1≤j,k≤n,j ̸=k

|⟨τj , τk⟩|2
 1

2

.

Theorem 1.1 says that

IRMS({τj}nj=1) ≥
(

n− d

d(n− 1)

) 1
2

.

Another powerful application of Theorem 1.1 is the lower bound for frame
potential which is introduced by Benedetto and Fickus [3] and further studied
in [6,8]. Let us recall that given a collection of unit vectors {τj}nj=1, the frame
potential is defined as

FP ({τj}nj=1) :=

n∑
j=1

n∑
k=1

|⟨τj , τk⟩|2.

Theorem 1.1 directly tells

FP ({τj}nj=1) ≥
n2

d
.

There are several practical applications of Theorem 1.1 such as correlations [30],
codebooks [14], numerical search algorithms [42, 43], quantum measurements
[31], coding and communications [33,37], code division multiple access (CDMA)
systems [24,25], wireless systems [29], compressed/compressive sensing [17,18,
36], ‘game of Sloanes’ [22], equiangular tight frames [34], etc.

A decade ago, a continuous version of Theorem 1.1 appeared in the paper
[13] which states as follows.

Theorem 1.2 ([13]). Let CPn−1 be the complex projective space and µ be a
normalized measure on CPn−1. If {τα}α∈CPn−1 is a continuous frame for a
d-dimensional subspace H of a Hilbert space H0, then∫

CPn−1

∫
CPn−1

|⟨τα, τβ⟩|2m dµ(α) dµ(β) ≥ 1(
d+m−1

m

) , ∀m ∈ N.
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Drawback of Theorem 1.2 is that it works only for the measures defined on
complex projective spaces. Further, we need a generalization of Inequality (1)
for measure spaces. Therefore it is desirable to improve Theorem 1.2 and to
get a continuous version of Inequality (1) by replacing maximum by supremum.
For the sake of completeness, we note that there are some further refinements
of Theorem 1.1, see [9, 12,39].

The goal of this article is to derive Theorem 1.1 for arbitrary measure spaces
(Theorem 2.7). We give some applications of Theorem 2.7. We also ask some
problems for further research.

Summary and the contribution of the paper : First order discrete Welch
bounds are the one most used in applications. We derived the continuous
version of this in Theorem 2.4. Its higher order version for normalized contin-
uous Bessel family indexed by measurable spaces with measurable diagonal is
derived in Theorem 2.7. Later, for non normalized continuous Bessel family,
continuous Welch bounds are derived in Theorem 2.10. Then we derive con-
tinuous Welch bounds for positive real powers in Theorem 2.15 and Theorem
2.16. Three main applications are given in Proposition 3.2, Proposition 3.5 and
Theorem 3.9.

2. Continuous Welch bounds

Our proof of the result stated in the abstract is using the theory of continuous
frames. This is a generalization of frames indexed by discrete sets to measurable
sets. Continuous frames are introduced independently by Ali, Antoine and
Gazeau [1] and Kaiser [23]. In the paper, K denotes C or R and H denotes a
finite dimensional Hilbert space.

Definition 2.1 ([1,23]). Let (Ω, µ) be a measure space. A collection {τα}α∈Ω

in a Hilbert space H is said to be a continuous frame (or generalized frame)
for H if the following holds.

(i) For each h ∈ H, the map Ω ∋ α 7→ ⟨h, τα⟩ ∈ K is measurable.
(ii) There are a, b > 0 such that

a∥h∥2 ≤
∫
Ω

|⟨h, τα⟩|2 dµ(α) ≤ b∥h∥2, ∀h ∈ H.

If a = b, then the frame is called as a tight frame and if ∥τα∥ = 1, ∀α ∈ Ω, then
we say that the frame is normalized. If a = b = 1, then the frame is called as
a Parseval frame. If we do not demand the first inequality in (ii), then we say
it is a continuous Bessel family for H.

We first observe that there is an abundance of continuous frames for finite
dimensional Hilbert spaces. Further, it is known that given any finite measure
space (Ω, µ) and a finite dimensional space H, there exists a continuous frame
{τα}α∈Ω for H [27]. Given a continuous Bessel family, the analysis operator

θτ : H ∋ h 7→ θτh ∈ L2(Ω); θτh : Ω ∋ α 7→ ⟨h, τα⟩ ∈ K
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is a well-defined bounded linear operator. Its adjoint, the synthesis operator,
is given by

θ∗τ : L2(Ω) ∋ f 7→
∫
Ω

f(α)τα dµ(α) ∈ H.

By combining analysis and synthesis operators, we get the frame operator,
defined as

Sτ := θ∗τθτ : H ∋ h 7→
∫
Ω

⟨h, τα⟩τα dµ(α) ∈ H.

Note that the integrals are weak integrals (Pettis integrals [35]). Following
result captures the trace of frame operator using Bessel family.

Theorem 2.2. Let {τα}α∈Ω be a continuous Bessel family for H. Then

Tra(Sτ ) =

∫
Ω

∥τα∥2 dµ(α),

Tra(S2
τ ) =

∫
Ω

∫
Ω

|⟨τα, τβ⟩|2 dµ(α) dµ(β).

Proof. Let {ωj}dj=1 be an orthonormal basis for H, where d is the dimension
of H. Then

Tra(Sτ ) =

d∑
j=1

⟨Sτωj , ωj⟩ =
d∑

j=1

〈∫
Ω

⟨ωj , τα⟩τα dµ(α), ωj

〉

=

d∑
j=1

∫
Ω

⟨ωj , τα⟩⟨τα, ωj⟩ dµ(α) =
∫
Ω

〈
d∑

j=1

⟨τα, ωj⟩ωj , τα

〉
dµ(α)

=

∫
Ω

∥τα∥2 dµ(α).

Further,

Tra(S2
τ ) =

d∑
j=1

⟨S2
τωj , ωj⟩ =

d∑
j=1

⟨Sτωj , Sτωj⟩ =
d∑

j=1

〈∫
Ω

⟨ωj , τα⟩τα dµ(α), Sτωj

〉

=

d∑
j=1

∫
Ω

⟨ωj , τα⟩⟨τα, Sτωj⟩ dµ(α) =
∫
Ω

〈
d∑

j=1

⟨τα, Sτωj⟩ωj , τα

〉
dµ(α)

=

∫
Ω

〈
d∑

j=1

⟨S∗
τ τα, ωj⟩ωj , τα

〉
dµ(α) =

∫
Ω

⟨S∗
τ τα, τα⟩ dµ(α)

=

∫
Ω

⟨Sττα, τα⟩ dµ(α) =
∫
Ω

〈∫
Ω

⟨τα, τβ⟩ τβ dµ(β), τα
〉

dµ(α)

=

∫
Ω

∫
Ω

|⟨τα, τβ⟩|2 dµ(α) dµ(β).
□
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Note that a finite spanning set is a frame for finite dimensional Hilbert space
[21]. Thus it is not required to assume any condition on set of vectors in the
discrete case to derive Theorem 2.2. However, we need to assume the Besselness
for continuous family of vectors to assure the existence of frame operator. With
Theorem 2.2 we derive continuous Welch bounds. First we need a lemma.

Lemma 2.3. If {τα}α∈Ω is a normalized continuous Bessel family for H with
bound b, then µ(Ω) ≤ bdim(H). In particular, µ(Ω) < ∞.

Proof. Let dim(H) = d and {ωj}dj=1 be an orthonormal basis for H. Then

µ(Ω) =

∫
Ω

∥τα∥2 dµ(α) =
∫
Ω

d∑
j=1

|⟨τα, ωj⟩|2 dµ(α) =
d∑

j=1

∫
Ω

|⟨τα, ωj⟩|2 dµ(α)

=

d∑
j=1

∫
Ω

|⟨ωj , τα⟩|2 dµ(α) ≤
d∑

j=1

b∥ωj∥2 = bd.
□

Theorem 2.4. Let (Ω, µ) be a measure space and {τα}α∈Ω be a normalized
continuous Bessel family for H of dimension d. If the diagonal ∆ := {(α, α) :
α ∈ Ω} is measurable in the measure space Ω× Ω, then∫

Ω×Ω

|⟨τα, τβ⟩|2 d(µ× µ)(α, β) =

∫
Ω

∫
Ω

|⟨τα, τβ⟩|2 dµ(α) dµ(β) ≥
µ(Ω)2

d
.(2)

Equality holds in Inequality (2) if and only if {τα}α∈Ω is a tight continuous
frame. Further, we have the first order continuous Welch bound

sup
α,β∈Ω,α̸=β

|⟨τα, τβ⟩|2 ≥ 1

(µ× µ)((Ω× Ω) \∆)

[
µ(Ω)2

d
− (µ× µ)(∆)

]
.

Proof. Let λ1, . . . , λd be eigenvalues of the frame operator Sτ . Then λ1, . . . , λd

≥ 0. Now using the diagonalizability of Sτ , Cauchy-Schwarz inequality and
Theorem 2.2 we get

µ(Ω)2 =

(∫
Ω

∥τα∥2 dµ(α)
)2

= (Tra(Sτ ))
2 =

(
d∑

k=1

λk

)2

≤ d

d∑
k=1

λ2
k

= dTra(S2
τ ) = d

∫
Ω

∫
Ω

|⟨τα, τβ⟩|2 dµ(α) dµ(β).

Equality holds if and only if we have equality in Cauchy-Schwarz inequality if
and only if the frame is tight. Since the measure is finite (Lemma 2.3), using
Fubini’s theorem,

µ(Ω)2

d
≤
∫
Ω

∫
Ω

|⟨τα, τβ⟩|2 dµ(α) dµ(β) =
∫
Ω×Ω

|⟨τα, τβ⟩|2 d(µ× µ)(α, β)

=

∫
∆

|⟨τα, τβ⟩|2 d(µ× µ)(α, β) +

∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|2 d(µ× µ)(α, β)
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=

∫
∆

|⟨τα, τα⟩|2 d(µ× µ)(α, β) +

∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|2 d(µ× µ)(α, β)

= (µ× µ)(∆) +

∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|2 d(µ× µ)(α, β)

≤ (µ× µ)(∆) + sup
α,β∈Ω,α ̸=β

|⟨τα, τβ⟩|2(µ× µ)((Ω× Ω) \∆)

which gives the required inequality after rearrangement. □

Under the stronger assumption that {τα}α∈Ω is a continuous frame for H,
Inequality (2) appears in Chapter 16 of [40]. We now illustrate Theorem 2.4
using the following example.

Example 2.5. Let Ω := [0, 2π] and µ be the Lebesgue measure on Ω. Define

τα := (cosα, sinα), ∀α ∈ Ω.

Then∫
Ω

|⟨(x, y), τα⟩|2 dα =

∫ 2π

0

|⟨(x, y), (cosα, sinα)⟩|2 dα

=

∫ 2π

0

(x cosα+ y sinα)2 dα

=

∫ 2π

0

(x2 cos2 α+ y2 sin2 α+ 2xy sinα cosα) dα

= π(x2 + y2) = π ∥(x, y)∥2 , ∀(x, y) ∈ R2.

Therefore {τα}α∈Ω is a normalized continuous frame for R2 [40]. Next we verify
inequalities in Theorem 2.4:∫

Ω

∫
Ω

|⟨τα, τβ⟩|2 dµ(α) dµ(β)

=

∫ 2π

0

∫ 2π

0

|⟨(cosα, sinα), (cosβ, sinβ)⟩|2 dα dβ

=

∫ 2π

0

∫ 2π

0

(cosα cosβ + sinα sinβ)2 dα dβ

=

(∫ 2π

0

cos2 αdα

)(∫ 2π

0

cos2 β dβ

)
+ 2

(∫ 2π

0

cosα sinαdα

)(∫ 2π

0

cosβ sinβ dβ

)
+

(∫ 2π

0

sin2 αdα

)(∫ 2π

0

sin2 β dβ

)
= 2π2 =

(2π)2

2
=

µ(Ω)2

d
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and

sup
α,β∈Ω,α ̸=β

|⟨τα, τβ⟩|2 = sup
α,β∈[0,2π],α̸=β

|⟨(cosα, sinα), (cosβ, sinβ)⟩|2

= sup
α,β∈[0,2π],α̸=β

| cosα cosβ + sinα sinβ|2

= sup
α,β∈[0,2π],α̸=β

| cos2(α− β)| = 1 >
1

4π2

[
4π2

2
− 0

]
=

1

(µ× µ)((Ω× Ω) \∆)

[
µ(Ω)2

d
− (µ× µ)(∆)

]
.

Our next goal is to derive higher order continuous Welch bounds. We are
going to use the following result.

Theorem 2.6 ([5, 10]). If V is a vector space of dimension d and Symm(V)
denotes the vector space of symmetric m-tensors, then

dim(Symm(V)) =
(
d+m− 1

m

)
, ∀m ∈ N.

Theorem 2.7. Let (Ω, µ) be a measure space and {τα}α∈Ω be a normalized
continuous Bessel family for H of dimension d. If the diagonal ∆ := {(α, α) :
α ∈ Ω} is measurable in the measure space Ω× Ω, then∫

Ω×Ω

|⟨τα, τβ⟩|2m d(µ× µ)(α, β) =

∫
Ω

∫
Ω

|⟨τα, τβ⟩|2m dµ(α) dµ(β)(3)

≥ µ(Ω)2(
d+m−1

m

) , ∀m ∈ N.

Equality holds in Inequality (3) if and only if {τα}α∈Ω is a tight continuous
frame. Further, we have the higher order continuous Welch bounds

sup
α,β∈Ω,α̸=β

|⟨τα, τβ⟩|2m ≥ 1

(µ× µ)((Ω× Ω) \∆)

[
µ(Ω)2(
d+m−1

m

) − (µ× µ)(∆)

]
,(4)

∀m ∈ N.

Proof. First note that {τα}α∈Ω is a normalized continuous Bessel family for
the Hilbert space Symm(H). We execute the proof of Theorem 2.4 for the
space Symm(H). Let λ1, . . . , λdim(Symm(H)) be eigenvalues of Sτ . Then using
Theorem 2.6 we get

µ(Ω)2 =

(∫
Ω

∥τα∥2m dµ(α)

)2

=

(∫
Ω

∥τ⊗m
α ∥2 dµ(α)

)2

= (Tra(Sτ ))
2 =

dim(Symm(H))∑
k=1

λk

2
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≤ dim(Symm(H))

dim(Symm(H))∑
k=1

λ2
k =

(
d+m− 1

m

)
Tra(S2

τ )

=

(
d+m− 1

m

)∫
Ω

∫
Ω

|⟨τ⊗m
α , τ⊗m

β ⟩|2 dµ(α) dµ(β)

=

(
d+m− 1

m

)∫
Ω

∫
Ω

|⟨τα, τβ⟩|2m dµ(α) dµ(β),

and hence

µ(Ω)2(
d+m−1

m

)
≤
∫
Ω

∫
Ω

|⟨τα, τβ⟩|2m dµ(α) dµ(β)

=

∫
Ω×Ω

|⟨τα, τβ⟩|2m d(µ× µ)(α, β)

=

∫
∆

|⟨τα, τα⟩|2m d(µ× µ)(α, β) +

∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|2m d(µ× µ)(α, β)

= (µ× µ)(∆) +

∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|2m d(µ× µ)(α, β)

≤ (µ× µ)(∆) + sup
α,β∈Ω,α̸=β

|⟨τα, τβ⟩|2m(µ× µ)((Ω× Ω) \∆)

which gives Inequality (4). □

Corollary 2.8. Theorem 1.1 is a corollary of Theorem 2.7.

Proof. Take Ω = {1, . . . , n} and µ as the counting measure. □

Corollary 2.9. Theorem 1.2 is a corollary of Theorem 2.7.

Proof. Take Ω = CPn−1 and µ as the normalized measure on CPn−1. □

We observe that given a measure space Ω, the diagonal ∆ need not be
measurable (see [15]). This is the reason behind the measurability of diagonal
in Theorem 2.7. Further, we see that the measurability of the diagonal ∆ was
used only in deriving Inequality (4) and not in Inequality (3).

In [38], Waldron generalized Welch bounds to vectors which need not be
normalized. In the following result we derive such a result for continuous Bessel
family, proof is similar to the proof of Theorem 2.7.

Theorem 2.10. Let (Ω, µ) be a σ-finite measure space and {τα}α∈Ω be a con-
tinuous Bessel family for H of dimension d. If the diagonal ∆ := {(α, α) : α ∈
Ω} is measurable in the measure space Ω× Ω, then∫

Ω×Ω

|⟨τα, τβ⟩|2m d(µ× µ)(α, β)(5)
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=

∫
Ω

∫
Ω

|⟨τα, τβ⟩|2m dµ(α) dµ(β)

≥ 1(
d+m−1

m

) (∫
Ω

∥τα∥2m dµ(α)

)2

, ∀m ∈ N.

Equality in Inequality (5) holds if and only if {τα}α∈Ω is a tight continuous
frame. Further, we have the generalized higher order continuous Welch bounds

sup
α,β∈Ω,α ̸=β

|⟨τα, τβ⟩|2m(6)

≥ 1

(µ× µ)((Ω× Ω) \∆)

[
1(

d+m−1
m

) (∫
Ω

∥τα∥2m dµ(α)

)2

−
∫
∆

∥τα∥4m d(µ× µ)(α, β)

]
, ∀m ∈ N.

Proof. We briefly sketch generalization of proof of Theorem 2.7. Let λ1, . . . ,
λdim(Symm(H)) be eigenvalues of Sτ . Then using Theorem 2.6 and Fubini’s
theorem, we get(∫

Ω

∥τα∥2m dµ(α)

)2

≤
(
d+m− 1

m

)∫
Ω

∫
Ω

|⟨τα, τβ⟩|2m dµ(α) dµ(β).

Therefore

1(
d+m−1

m

) (∫
Ω

∥τα∥2m dµ(α)

)2

≤
∫
Ω

∫
Ω

|⟨τα, τβ⟩|2m dµ(α) dµ(β)

≤
∫
∆

∥τα∥4m d(µ× µ)(α, β) +

∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|2m d(µ× µ)(α, β)

≤
∫
∆

∥τα∥4m d(µ× µ)(α, β) + sup
α,β∈Ω,α ̸=β

|⟨τα, τβ⟩|2m(µ× µ)((Ω× Ω) \∆).
□

Note that we imposed σ-finiteness of measure in Theorem 2.10 to use Fubini’s
theorem whereas we derived in Lemma 2.3 that measure is finite for normalized
continuous Bessel family. Also note that Theorem 2.10 remains valid as long as
Fubini’s theorem is valid (for instance, it is valid for complete measure spaces).

In a recent work, Christensen, Datta and Kim derived Welch bounds for
dual frames [9]. We now extend this result to continuous frames. For this we
recall the notion of dual frame. A continuous frame {ωα}α∈Ω for H is said to
be a dual for a continuous frame {τα}α∈Ω for H if θ∗ωθτ = IH or θ∗τθω = IH,
the identity operator on H. In terms of weak integrals, this is same as∫

Ω

⟨h, τα⟩ωα dµ(α) = h, ∀h ∈ H or

∫
Ω

⟨h, ωα⟩τα dµ(α) = h, ∀h ∈ H.
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We now see that the frame {S−1
τ τα}α∈Ω is always a dual to a frame {τα}α∈Ω

for H. Further, if {ωα}α∈Ω is any dual for {τα}α∈Ω, then∫
Ω

|⟨h, ωα⟩|2 dµ(α) ≥
∫
Ω

|⟨h, S−1
τ τα⟩|2 dµ(α), ∀h ∈ H.(7)

We need two more results before we derive continuous Welch bounds for dual
frames.

Theorem 2.11. If {τα}α∈Ω is a continuous frame for H, then for any linear
operator T : H → H, we have

Tra(T ) =

∫
Ω

⟨TS− 1
2

τ τα, S
− 1

2
τ τα⟩ dµ(α).

Proof. First we prove the theorem for Parseval frames. Assume that {τα}α∈Ω is
Parseval. Let {ωj}dj=1 be an orthonormal basis for H, where d is the dimension
of H. Then

Tra(T ) =

d∑
j=1

⟨Tωj , ωj⟩ =
d∑

j=1

〈∫
Ω

⟨Tωj , τα⟩τα dµ(α), ωj

〉

=

d∑
j=1

∫
Ω

⟨Tωj , τα⟩⟨τα, ωj⟩ dµ(α) =
∫
Ω

〈
d∑

j=1

⟨τα, ωj⟩Tωj , τα

〉
dµ(α)

=

∫
Ω

⟨Tτα, τα⟩ dµ(α).

Now the theorem follows by noting that {S−1/2
τ τα}α∈Ω is a Parseval frame for

H. □

Theorem 2.12. If {ωα}α∈Ω is a dual continuous frame for {τα}α∈Ω, then∫
Ω

∫
Ω

|⟨τα, ωβ⟩|2 dµ(α) dµ(β) ≥ dim(H).

Proof. Inequality (7) says that∫
Ω

|⟨τα, ωβ⟩|2 dµ(β) ≥
∫
Ω

|⟨τα, S−1
τ τβ⟩|2 dµ(β), ∀α ∈ Ω.

Therefore∫
Ω

∫
Ω

|⟨τα, ωβ⟩|2 dµ(β) dµ(α) ≥
∫
Ω

∫
Ω

|⟨τα, S−1
τ τβ⟩|2 dµ(β) dµ(α).

Now we simplify the right side and use Theorem 2.11 to get∫
Ω

∫
Ω

|⟨τα, S−1
τ τβ⟩|2 dµ(β) dµ(α)

=

∫
Ω

∫
Ω

|⟨S− 1
2

τ τα, S
− 1

2
τ τβ⟩|2 dµ(β) dµ(α)

=

∫
Ω

∥S− 1
2

τ τα∥2 dµ(α) =
∫
Ω

⟨S− 1
2

τ τα, S
− 1

2
τ τα⟩ dµ(α) = Tra(IH) = dim(H).

□
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Theorem 2.13. Let {τα}α∈Ω be a continuous frame for H of dimension d.
Assume that {ωα}α∈Ω is a dual continuous frame for {τα}α∈Ω and

⟨τα, ωα⟩ = ⟨τβ , ωβ⟩, ∀α, β ∈ Ω.

If the diagonal ∆ := {(α, α) : α ∈ Ω} is measurable in the measure space Ω×Ω,
then

sup
α,β∈Ω,α̸=β

|⟨τα, ωβ⟩|2 ≥ d(µ(Ω)2 − d(µ× µ)(∆))

µ(Ω)2(µ× µ)((Ω× Ω) \∆)
.

Proof. Since {ωα}α∈Ω is a dual for {τα}α∈Ω we have θ∗ωθτ = IH. Let {ρj}dj=1

be an orthonormal basis for H. Then

d = dim(H) =

d∑
j=1

⟨ρj , ρj⟩ =
d∑

j=1

〈∫
Ω

⟨ρj , τα⟩ωα dµ(α), ρj

〉

=

∫
Ω

d∑
j=1

⟨ρj , τα⟩⟨ωα, ρj⟩ dµ(α) =
∫
Ω

〈
ωα,

d∑
j=1

⟨τα, ρj⟩ρj

〉
dµ(α)

=

∫
Ω

⟨ωα, τα⟩ dµ(α) =
∫
Ω

⟨τα, ωα⟩ dµ(α).

Set γ := ⟨τα, ωα⟩ which is independent of α by the assumption. Then∫
∆

|⟨τα, ωα⟩|2 d(µ× µ)(α, β) =

∫
∆

|γ|2 d(µ× µ)(α, β)

=

∫
∆

∣∣∣∣ 1

µ(Ω)

∫
Ω

⟨τα, ωα⟩ dµ(α)
∣∣∣∣2 d(µ× µ)(α, β)

=

∫
∆

∣∣∣∣ d

µ(Ω)

∣∣∣∣2 d(µ× µ)(α, β)

=
d2(µ× µ)(∆)

µ(Ω)2
.

Theorem 2.12 then gives

sup
α,β∈Ω,α̸=β

|⟨τα, ωβ⟩|2

≥ 1

(µ× µ)((Ω× Ω) \∆)

∫
(Ω×Ω)\∆

|⟨τα, ωβ⟩|2 d(µ× µ)(α, β)

=
1

(µ× µ)((Ω× Ω) \∆)

[ ∫
Ω

∫
Ω

|⟨τα, ωβ⟩|2 dµ(α) dµ(β)

−
∫
∆

|⟨τα, ωα⟩|2 d(µ× µ)(α, β)

]
≥ 1

(µ× µ)((Ω× Ω) \∆)

[
d− d2(µ× µ)(∆)

µ(Ω)2

]
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=
d

(µ× µ)((Ω× Ω) \∆)

[
1− d(µ× µ)(∆)

µ(Ω)2

]
.

□

Corollary 2.14. Let {τα}α∈Ω be a continuous frame for H of dimension d.
Assume that {ωα}α∈Ω is a dual continuous frame for {τα}α∈Ω. If the diagonal
∆ := {(α, α) : α ∈ Ω} is measurable in the measure space Ω× Ω, then

sup
α,β∈Ω,α̸=β

|⟨τα, ωβ⟩|2

≥ 1

(µ× µ)((Ω× Ω) \∆)

[
d−

∫
∆

|⟨τα, ωα⟩|2 d(µ× µ)(α, β)

]
.

It is natural to ask whether we have continuous Welch bounds by replacing
natural number m in Theorem 2.7 by arbitrary positive real r. We now derive
such results. In the discrete case, the first result for normalized tight frames is
derived in [20] and the second result is derived in [16].

Theorem 2.15. Let {τα}α∈Ω be a normalized continuous Bessel family for H
of dimension d. Then

1

µ(Ω)
Tra(θ∗τθτ )

r ≥
(
µ(Ω)

d

)d−1

, ∀r ∈ [1,∞)

and

1

µ(Ω)
Tra(θ∗τθτ )

r ≤
(
µ(Ω)

d

)d−1

, ∀r ∈ (0, 1).

Proof. Let λ1, . . . , λdim(Symm(H)) be eigenvalues of Sτ . Let r ∈ [1,∞). Using
Jensen’s inequality (

1

d

d∑
k=1

λk

)r

≤ 1

d

d∑
k=1

λr
k.

Since Sτ is diagonalizable we get(
µ(Ω)

d

)r

=

(
1

d

∫
Ω

∥τα∥2 dµ(α)
)r

=

(
1

d
Tra(Sτ )

)r

≤ 1

d
Tra(Sτ )

r =
1

d
Tra(θ∗τθτ )

r.

Similarly the case r ∈ (0, 1) follows by using Jensen’s inequality. □

Theorem 2.16. Let 2 < p < ∞. Let (Ω, µ) be a measure space and {τα}α∈Ω

be a normalized continuous Bessel family for H of dimension d. If the diagonal
∆ := {(α, α) : α ∈ Ω} is measurable in the measure space Ω× Ω, then∫

Ω×Ω

|⟨τα, τβ⟩|p d(µ× µ)(α, β)

=

∫
Ω

∫
Ω

|⟨τα, τβ⟩|p dµ(α) dµ(β)
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≥ 1

(µ× µ)((Ω× Ω) \∆)
p
2−1

(
µ(Ω)2

d
− (µ× µ)(∆)

) p
2

+ (µ× µ)(∆).

Proof. Define r := 2p/(p − 2) and q be the conjugate index of p/2. Then
q = r/2. Using Theorem 2.4 and Holder’s inequality, we have

µ(Ω)2

d
− (µ× µ)(∆)

=

∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|2 d(µ× µ)(α, β)

≤

(∫
(Ω×Ω)\∆

||⟨τα, τβ⟩|2|
p
2 d(µ× µ)(α, β)

) 2
p
(∫

(Ω×Ω)\∆
d(µ× µ)(α, β)

) 1
q

=

(∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|p d(µ× µ)(α, β)

) 2
p

(µ× µ)((Ω× Ω) \∆)
1
q

=

(∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|p d(µ× µ)(α, β)

) 2
p

(µ× µ)((Ω× Ω) \∆)
2
r

=

(∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|p d(µ× µ)(α, β)

) 2
p

(µ× µ)((Ω× Ω) \∆)
p−2
p

which gives(
µ(Ω)2

d
− (µ× µ)(∆)

) p
2

≤

(∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|p d(µ× µ)(α, β)

)
(µ× µ)((Ω× Ω) \∆)

p
2−1.

Therefore

1

(µ× µ)((Ω× Ω) \∆)
p
2−1

(
µ(Ω)2

d
− (µ× µ)(∆)

) p
2

+ (µ× µ)(∆)

=
1

(µ× µ)((Ω× Ω) \∆)
p
2−1

(
µ(Ω)2

d
− (µ× µ)(∆)

) p
2

+

∫
∆

|⟨τα, τα⟩|p d(µ× µ)(α, β)

≤
∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|p d(µ× µ)(α, β) +

∫
∆

|⟨τα, τα⟩|p d(µ× µ)(α, β)

=

∫
Ω×Ω

|⟨τα, τβ⟩|p d(µ× µ)(α, β).
□
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3. Applications

Our first application of Theorem 2.7 is to the continuous version of RMS
correlation of vectors which we define as follows.

Definition 3.1. Let {τα}α∈Ω be a normalized continuous Bessel family for H.
If the diagonal ∆ is measurable, then the continuous root-mean-square (CRMS)
absolute cross relation of {τα}α∈Ω is defined as

ICRMS({τα}α∈Ω)

:=

(
1

(µ× µ)((Ω× Ω) \∆)

∫
(Ω×Ω)\∆

|⟨τα, τβ⟩|2 d(µ× µ)(α, β)

) 1
2

.

Theorem 2.7 now gives the following estimate.

Proposition 3.2. Under the set up as in Definition 3.1, one has

1 ≥ ICRMS({τα}α∈Ω) ≥
(

1

(µ× µ)((Ω× Ω) \∆)

[
µ(Ω)2

d
− (µ× µ)(∆)

]) 1
2

.

Our second application of Theorem 2.7 is to the continuous version of frame
potential which is defined as follows.

Definition 3.3. Let {τα}α∈Ω be a normalized continuous Bessel family for H.
The continuous frame potential of {τα}α∈Ω is defined as

FP ({τα}α∈Ω) :=

∫
Ω

∫
Ω

|⟨τα, τβ⟩|2 dµ(α) dµ(β).

Note that the order of integration does not matter in Definition 3.3. Further,
finiteness of measure says that potential is finite. In general, it is difficult to
find potential using Definition 3.3. Following theorem simplifies it to a greater
extent.

Theorem 3.4. If {τα}α∈Ω is a normalized continuous Bessel family for H,
then

FP ({τα}α∈Ω) = Tra(S2
τ ) = Tra((θ∗τθτ )

2).

Proof. This follows from Theorem 2.2. □

Using Theorem 2.7 we have following estimates.

Proposition 3.5. Given a normalized continuous Bessel family {τα}α∈Ω for
H, one has

µ(Ω)2

d
≤ FP ({τα}α∈Ω) ≤ µ(Ω)2.

Further, if the diagonal ∆ is measurable, then one also has

(µ× µ)(∆) ≤ FP ({τα}α∈Ω) ≤ µ(Ω)2.
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Our third application of Theorem 2.7 is to the continuous frame correlations
defined as follows.

Definition 3.6. Let {τα}α∈Ω be a normalized continuous frame for H. We
define the continuous frame correlation of {τα}α∈Ω as

M({τα}α∈Ω) := sup
α,β∈Ω,α ̸=β

|⟨τα, τβ⟩|.

In discrete frame theory the notion which comes along with frame correlation
is the notion of Grassmannian frames defined in [33]. We next set up the notion
of continuous Grassmannian frames.

Definition 3.7. A normalized continuous frame {τα}α∈Ω for H is said to be
a continuous Grassmannian frame for H if

M({τα}α∈Ω) = inf

{
M({ωα}α∈Ω) : {ωα}α∈Ω is a normalized continuous

frame for H
}
.

The notion which is associated to Grassmannian frames is the notion of
equiangular frames (see [33]). For the continuous case, we set the definition as
follows.

Definition 3.8. A continuous frame {τα}α∈Ω for H is said to be γ-equiangular
if there exists γ ≥ 0 such that

|⟨τα, τβ⟩| = γ, ∀α, β ∈ Ω, α ̸= β.

Theorem 3.9. Let {τα}α∈Ω be a normalized continuous frame for H. Then

M({τα}α∈Ω) ≥
(

1

(µ× µ)((Ω× Ω) \∆)

[
µ(Ω)2

d
− (µ× µ)(∆)

]) 1
2

=: γ.(8)

If the frame is γ-equiangular, then we have equality in Inequality (8).

4. Problems for future research

Based on the results and conjectures in Hilbert space frame theory, we make
following problems and conjectures for future research.

(I) Since Fubini’s theorem is not valid for arbitrary measure spaces, based
on Theorem 2.10 we ask following problem.

Question 4.1. Classify measure spaces (Ω, µ) such that Theorem 2.10 holds?
In other words, given a measure space (Ω, µ), does the validity of Inequality (5)
or Inequality (6) implies conditions on measure space (Ω, µ), say σ-finite?

(II) Higher order continuous Welch bounds leads to the following question.

Question 4.2. Is there a higher order version of Theorem 2.13 like Theorem
2.7?
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(III) There are four more bounds which are in line with Welch bounds. To
state them we need a definition.

Definition 4.3 ([22]). Given d ∈ N, define Gerzon’s bound

Z(d,K) :=

{
d2 if K = C,

d(d+1)
2 if K = R.

Theorem 4.4 ([7,11,19,22,26,28,32,42]). Define m := dimR(K)/2. If {τj}nj=1

is any collection of unit vectors in Kd, then

(i) (Bukh-Cox bound)

max
1≤j,k≤n,j ̸=k

|⟨τj , τk⟩| ≥
Z(n− d,K)

n(1 +m(n− d− 1)
√
m−1 + n− d)−Z(n− d,K)

if n > d.

(ii) (Orthoplex/Rankin bound)

max
1≤j,k≤n,j ̸=k

|⟨τj , τk⟩| ≥
1√
d

if n > Z(d,K).

(iii) (Levenstein bound)

max
1≤j,k≤n,j ̸=k

|⟨τj , τk⟩| ≥

√
n(m+ 1)− d(md+ 1)

(n− d)(md+ 1)
if n > Z(d,K).

(iv) (Exponential bound)

max
1≤j,k≤n,j ̸=k

|⟨τj , τk⟩| ≥ 1− 2n
−1
d−1 .

Theorem 4.4 leads to the following problem.

Question 4.5. Whether there is a continuous version of Theorem 4.4?. In
particular, does there exists a continuous version of

(i) Bukh-Cox bound?
(ii) Orthoplex/Rankin bound?
(iii) Levenstein bound?
(iv) Exponential bound?

(IV) Proposition 3.5 and the study of paper [3] leads to the following prob-
lem.

Question 4.6. Is there a characterization of continuous frames using contin-
uous frame potential (like Theorem 7.1 in [3])?

(V) Using compactness and continuity arguments it is known that Grass-
mannian frames exist in every dimension with any number of vectors (greater
than or equal to dimension) [4]. However we can not use this argument for
measures. Therefore we state the following open problem.
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Question 4.7. Classify measure spaces and (finite dimensional) Hilbert spaces
so that continuous Grassmannian frames exist.

(VI) There is a celebrated Zauner’s conjecture for equiangular tight frames
(see [2]). For the purpose of record and based on Theorem 3.9, we set the
continuous version of Zauner’s conjecture as follows.

Conjecture 4.8 (Continuous Zauner’s conjecture). For a given measure space
(Ω, µ) and for every d ∈ N, there exists a γ-equiangular normalized continuous
frame {τα}α∈Ω for Cd, where

γ :=

(
1

(µ× µ)((Ω× Ω) \∆)

[
µ(Ω)2

d
− (µ× µ)(∆)

]) 1
2

= |⟨τα, τβ⟩|, ∀α, β ∈ Ω, α ̸= β.

(VII) In the case of (discrete) Grassmannian frames, the converse statement
of Theorem 3.9 is valid (see [33]). There are also relations between number of
elements in the frame and dimension of the space (Theorem 2.3 in [33]). This
leads to the following problem.

Question 4.9. When does converse of Theorem 3.9 holds? Whether there is
any relation between measure of Ω and the dimension of H?
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