Acknowledgement
The author Amruthalakshmi M. R., is thankful to Department of Science and Technology, Ministry of Science and Technology, Government of India, for providing financial assistance through DST INSPIRE Fellowship (No: DST/INSPIRE Fellowship/[IF 190869]).
References
- A. Besse, Einstein Manifolds, Springer, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
- D. E. Blair, Riemanniaan geometry of contact and symplectic manifolds, Prog. Math., Birkhaauser, Basel 203 (2010).
- B. Cappelletti-Montano, A. De Nicola, and A. I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys., 25 (2013), 1343002.
- P. Dacko, On almost cosymplectic manifolds with the structure vector field ξ belonging to the k-nullity distribution, Balkan J. Geom. Appl. 5 (2000), no. 2, 47-60.
- P. Dacko and Z. Olszak, On almost cosymplectic (κ, µ, ν)-spaces, in PDEs, submanifolds and affine differential geometry, 211-220, Banach Center Publ., 69, Polish Acad. Sci. Inst. Math., Warsaw, 2005. https://doi.org/10.4064/bc69-0-17
- M. N. Devaraja, H. A. Kumara, and V. Venkatesha, Riemann soliton within the framework of contact geometry, Quaest. Math. 44 (2021), no. 5, 637-651. https://doi.org/10.2989/16073606.2020.1732495
- H. Endo, Non-existence of almost cosymplectic manifolds satisfying a certain condition, Tensor (N.S.) 63 (2002), no. 3, 272-284.
- S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382. http://projecteuclid.org/euclid.pjm/1102977874 102977874
- R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
- I. E. Hirica, C. Udriste, and C. Udriste, Ricci and Riemann solitons, Balkan J. Geom. Appl. 21 (2016), no. 2, 35-44.
- Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. http://projecteuclid.org/euclid.kmj/1138036371 https://doi.org/10.2996/kmj/1138036371
- Z. Olszak and R. Ro,sca, Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39 (1991), no. 3-4, 315-323.
- Z. Ozturk, N. Aktan, and C. Murathan, Almost α -Cosymplectic (κ, µ, ν)-spaces, http://arxiv.org/abs/1007.0527v1.
- S. E. Stepanov and I. I. Tsyganok, The theory of infinitesimal harmonic transformations and its applications to the global geometry of Riemann solitons, Balkan J. Geom. Appl. 24 (2019), no. 1, 113-121.
- C. Udriste and C. Udriste, Riemann flow and Riemann wave, An. Univ. Vest Timis. Ser. Mat.-Inform. 48 (2010), no. 1-2, 265-274.
- C. Udriste and C. Udriste, Riemann flow and Riemann wave via bialternate product Riemannian metric, preprint, arXiv.org/math.DG/1112.4279v4 (2012).
- V. Venkatesha, H. A. Kumara, and D. M. Naik, Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 7, 2050105, 22 pp. https://doi.org/10.1142/S0219887820501054
- Y. Wang, A generalization of the Goldberg conjecture for coKahler manifolds, Mediterr. J. Math. 13 (2016), no. 5, 2679-2690. https://doi.org/10.1007/s00009-015-0646-8
- K. Yano, Integral formulas in Riemannian geometry, Pure and Applied Mathematics, No. 1, Marcel Dekker, Inc., New York, 1970.