Acknowledgement
The authors gratefully acknowledge the financial support from the Scientific Research Fund of the Institute of Engineering Mechanics, China Earthquake Administration (Grant No. 2021D18), Visiting Researcher Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science (2021SGG01), and Scientific Research Fund of Multi-Functional Shaking Tables Laboratory of Beijing University of Civil Engineering and Architecture.
References
- Abbasnia, R., Mirzaee, A. and Shayanfar, M. (2018), "Simultaneous identification of damage in bridge under moving mass by Adjoint variable method", Smart Struct. Syst., Int. J., 21(4), 449-467. https://doi.org/10.12989/sss.2018.21.4.449
- Adnan, R.M., Liang, Z.M., Heddam, S., Zounemat-Kermani, M., Kisi, O. and Li, B.Q. (2020), "Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs", J. Hydrol., 586, 124371. https://doi.org/10.1016/j.jhydrol.2019.124371.
- Alabi, S.A., Hu, Q., Lam, H.F. and Zhu, H.P. (2018), "Bayesian ballast damage detection utilizing a modified evolutionary algorithm", Smart Struct. Syst., Int. J., 21(4), 435-448. https://doi.org/10.12989/sss.2018.21.4.435
- Alexander, I., Andras, S. and Andy, J. (2008), Engineering design via surrogate modelling, University Southampton, Southampton, UK.
- Alizadeh, R., Jia, L.Y., Nellippallil, A.B., Wang, G.X., Hao, J., Allen, J.K. and Mistree, F. (2019), "Ensemble of surrogates and cross-validation for rapid and accurate predictions using small data sets", Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing, 33(4), 484-501. https://doi.org/10.1017/S089006041900026X
- Alkayem, N.F., Cao, M.S., Zhang, Y.F., Bayat, M. and Su, Z.Q. (2018), "Structural damage detection using finite element model updating with evolutionary algorithms: a survey", Neural Comput. Applicat., 30(2), 389-411. http://doi.org/10.1007/s00521-017-3284-1
- Azim, M.R., Zhang, H.Y. and Gul, M. (2020), "Damage detection of railway bridges using operational vibration data: theory and experimental verifications", Struct. Monitor. Maint., Int. J., 7(2), 149-166. http://doi.org/10.12989/smm.2020.7.2.149
- Barazanchy, D., Martinez, M., Rocha, B. and Yanishevsky, M. (2014), "A hybrid structural health monitoring system for the detection and localization of damage in composite structures", J. Sensors, 2014, 1-10. https://doi.org/10.1155/2014/109403
- Beck, J.L. and Katafygiotis, L.S. (1998), "Updating models and their uncertainties. I: Bayesian statistical framework", J. Eng. Mech., 124(4), 455-461. http://doi.org/Doi 10.1061/(Asce)0733-9399(1998)124:4(455)
- Beniddir, M.A., Kang, K.B., Genta-Jouve, G., Huber, F., Rogers, S. and van der Hooft, J.J.J. (2021), "Advances in decomposing complex metabolite mixtures using substructure- and network-based computational metabolomics approaches", Natural Product Reports, 38(11), 1967-1993. http://doi.org/10.1039/d1np00023c
- Berk, J., Nguyen, V., Gupta, S., Rana, S. and Venkatesh, S. (2018), "Exploration enhanced expected improvement for bayesian optimization", Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases.
- Bisbo, M.K. and Hammer, B. (2020), "Efficient global structure optimization with a machine-learned surrogate model", Phys. Rev. Lett., 124(8), 086102. http://doi.org/10.1103/PhysRevLett.124.086102
- Cai, E.J. and Zhang, Y. (2022), "Gaussian mixture model based phase prior learning for video motion estimation", Mech. Syst. Signal Process., 175. https://doi.org/10.1016/j.ymssp.2022.109103.
- Candy, J.V. (2005), Model-based signal processing, John Wiley & Sons.
- Chen, Y.-T., Shi, J., Ye, Z., Mertz, C., Ramanan, D. and Kong, S. (2022), "Multimodal object detection via probabilistic ensembling", Proceedings of the Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October.
- Cheng, K. and Lu, Z.Z. (2020), "Structural reliability analysis based on ensemble learning of surrogate models", Struct. Safety, 83, 101905. https://doi.org/10.1016/j.strusafe.2019.101905
- Cheung, S.H. and Beck, J.L. (2009), "Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters", J. Eng. Mech., 135(4), 243-255. http://doi.org/10.1061/(Asce)0733-9399(2009)135:4(243)
- Ching, J. and Beck, J.L. (2003), Two-Stage Bayesian Structural Health Monitoring Approach for Phase II ASCE Experimental Benchmark Studies.
- Ching, J.Y. and Chen, Y.C. (2007), "Transitional markov chain monte carlo method for Bayesian model updating, model class selection, and model averaging", J. Eng. Mech., 133(7), 816-832. http://doi.org/10.1061/(Asce)0733-9399(2007)133:7(816)
- Christelis, V., Kopsiaftis, G. and Mantoglou, A. (2019), "Performance comparison of multiple and single surrogate models for pumping optimization of coastal aquifers", Hydrol. Sci. J., 64(3), 336-349. https://doi.org/10.1080/02626667.2019.1584400
- Collins, J.D., Hart, G.C., Hasselman, T.K. and Kennedy, B. (1974), "Statistical Identification of Structures", AIAA J., 12(2), 185-190. http://doi.org/Doi 10.2514/3.49190
- Daubechies, I. (1992), Ten lectures on wavelets: SIAM.
- DeVore, C., Jiang, Z.S., Christenson, R.E., Stromquist-LeVoir, G. and Johnson, E.A. (2016), "Experimental verification of substructure identification for damage detection in shear buildings", J. Eng. Mech., 142(1), 04015060. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000929
- Dhamotharan, V., Jadhav, P.D., Ramu, P. and Prakash, A.K. (2018), "Optimal design of savonius wind turbines using ensemble of surrogates and CFD analysis", Struct. Multidiscipl. Optimiz., 58(6), 2711-2726. http://doi.org/10.1007/s00158-018-2052-x
- Ding, Y., Ren, P., Zhao, H. and Miao, C. (2018), "Structural health monitoring of a high-speed railway bridge: five years review and lessons learned", Smart Struct. Syst., Int. J., 21(5), 695-703. https://doi.org/10.12989/sss.2018.21.5.695
- Do, N.T., Mei, Q.P. and Gul, M. (2019), "Damage assessment of shear-type structures under varying mass effects", Struct. Monitor. Maint., Int. J., 6(3), 237-254. http://doi.org/10.12989/smm.2019.6.3.237
- Effendi, M.R., Mengko, T.L.R., Gunawan, A.H. and Munir, A. (2019), "Performance evaluation of wavelet packet modulation for wireless digital communications", Proceedings of the International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey.
- Elias, I., Rubio, J.D., Martinez, D.I., Vargas, T.M., Garcia, V., Mujica-Vargas, D., Meda-Campana, J.A., Pacheco, J., Gutierrez, G.J. and Zacarias, A. (2020), "Genetic algorithm with radial basis mapping network for the electricity consumption modeling", Appl. Sci.-Basel, 10(12), 4239. https://doi.org/10.3390/app10124239.
- Erazo, K. and Hernandez, E.M. (2016), "Bayesian model-data fusion for mechanistic postearthquake damage assessment of building structures", J. Eng. Mech., 142(9), 04016062. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001114
- Fei, J. and Wang, T. (2019), "Adaptive fuzzy-neural-network based on RBFNN control for active power filter", Int. J. Mach. Learn. Cybernet., 10, 1139-1150. https://doi.org/10.1007/s13042-018-0792-y
- Flah, M., Nunez, I., Ben Chaabene, W. and Nehdi, M.L. (2021), "Machine learning algorithms in civil structural health monitoring: a systematic review", Arch. Computat. Methods Eng., 28(4), 2621-2643. https://doi.org/10.1007/s11831-020-09471-9
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", The Annals of Statistics, 19(1), 1-67. https://doi.org/10.1214/aos/1176347963
- Goel, T., Haftka, R.T., Shyy, W. and Queipo, N.V. (2007), "Ensemble of surrogates", Struct. Multidiscipl. Optimiz., 33(3), 199-216. http://doi.org/10.1007/s00158-006-0051-9
- Guemes, A., Fernandez-Lopez, A., Pozo, A.R. and Sierra-Perez, J. (2020), "Structural health monitoring for advanced composite structures: a review", J. Compos. Sci., 4(1), 13. https://doi.org/10.3390/jcs4010013
- He, W.Y., Zhu, S. and Ren, W.X. (2018), "Progressive damage detection of thin plate structures using wavelet finite element model updating", Smart Struct. Syst., Int. J., 22(3), 277-290. https://doi.org/10.12989/sss.2018.22.3.277
- Hoa, T.N., Khatir, S., Roeck, G.D., Long, N.N., Thanh, B.T. and Wahab, M.A. (2020), "An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm", Smart Struct. Syst., Int. J., 25(4), 487-499. https://doi.org/10.12989/sss.2020.25.4.487
- Hou, R. and Xia, Y. (2020), "Review on the new development of vibration-based damage identification for civil engineering structures: 2010-2019", J. Sound Vib., 491(9). https://doi.org/10.1016/j.jsv.2020.115741
- Houret, T., Besnier, P., Vauchamp, S. and Pouliguen, P. (2019), "Controlled stratification based on kriging surrogate model: An algorithm for determining extreme quantiles in electromagnetic compatibility risk analysis", IEEE Access, 8, 3837-3847. https://doi.org/10.1109/ACCESS.2019.2961851
- Hu, J. and Yang, J.H. (2018), "Operational modal analysis and Bayesian model updating of a coupled building", Int. J. Struct. Stabil. Dyn., 19(01), p. 1940012. https://doi.org/10.1142/S0219455419400121
- Huang, M.S., Cheng, X.H. and Lei, Y.Z. (2021), "Structural damage identification based on substructure method and improved whale optimization algorithm", J. Civil Struct. Health Monitor., 11(2), 351-380. http://doi.org/10.1007/s13349-020-00456-7
- Jiang, S.H., Papaioannou, I. and Straub, D. (2018), "Bayesian updating of slope reliability in spatially variable soils with in-situ measurements", Eng. Geol., 239, 310-320. http://doi.org/10.1016/j.enggeo.2018.03.021
- Jiang, P., Zhou, Q. and Shao, X. (2020), Surrogate model-based engineering design and optimization, Springer.
- Khatir, S., Wahab, M.A., Boutchicha, D. and Khatir, T. (2019), "Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis", J. Sound Vib., 448, 230-246. http://doi.org/10.1016/j.jsv.2019.02.017
- Kirschner, J., Mutny, M., Hiller, N., Ischebeck, R. and Krause, A. (2019), "Adaptive and safe Bayesian optimization in high dimensions via one-dimensional subspaces", Proceedings of the International Conference on Machine Learning.
- Krige, D.G. (1951), "A statistical approach to some basic mine valuation problems on the Witwatersrand", J. Southern African Inst. Min. Metall., 52(6), 119-139. https://hdl.handle.net/10520/AJA0038223X_4792 10520/AJA0038223X_4792
- Krishansamy, L. and Arumulla, R. (2018), "A hybrid structural health monitoring technique for detection of subtle structural damage", Smart Struct. Syst., Int. J., 22(5), 587-609. https://doi.org/10.12989/sss.2018.22.5.587
- Kwag, S. and Gupta, A. (2018), "Computationally efficient fragility assessment using equivalent elastic limit state and Bayesian updating", Comput. Struct., 197, 1-11. http://doi.org/10.1016/j.compstruc.2017.11.011
- Li, J. and Hao, H. (2014), "Substructure damage identification based on wavelet-domain response reconstruction", Struct. Health Monitor., Int. J., 13(4), 389-405. http://doi.org/10.1177/1475921714532991
- Li, X., Gong, C.L., Gu, L.X., Gao, W.K., Jing, Z. and Su, H. (2018), "A sequential surrogate method for reliability analysis based on radial basis function", Struct. Safety, 73, 42-53. http://doi.org/10.1016/j.strusafe.2018.02.005
- Li, C., Li, H. and Chen, X. (2021), "A framework for fast estimation of structural seismic responses using ensemble machine learning model", Smart Struct. Syst., Int. J., 28(3), 425-441. https://doi.org/10.12989/sss.2021.28.3.425
- Liao, X., Sun, J., Wang, Y. and Li, M. (2021), "Damage detection based on multi-wavelet basis and multi-scale feature fusion", Proceedings of 2021 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE), pp. 210-213. http://doi.org/10.1109/mlise54096.2021.00044
- Lin, G.W., Zhang, Y. and Liao, Q.Z. (2021), "Developing efficient model updating approaches for different structural complexity-an ensemble learning and uncertainty quantifications", Smart Struct. Syst., Int. J., 29(2), 321-336. http://doi.org/10.12989/sss.2022.29.2.321
- Liu, L., Mi, J., Zhang, Y. and Lei, Y. (2021), "Damage detection of bridge structures under unknown seismic excitations using support vector machine based on transmissibility function and wavelet packet energy", Smart Struct. Syst., Int. J., 27(2), 257-266. https://doi.org/10.12989/sss.2021.27.2.257
- Lo, M.K. and Leung, Y.F. (2019), "Bayesian updating of subsurface spatial variability for improved prediction of braced excavation response", Can. Geotech. J., 56(8), 1169-1183. http://doi.org/10.1139/cgj-2018-0409
- Mao, J.X., Wang, H. and Spencer, B.F. (2019), "Gaussian mixture model for automated tracking of modal parameters of long-span bridge", Smart Struct. Syst., Int. J., 24(2), 243-256. https://doi.org/10.12989/sss.2019.24.2.243
- Mao, J.X., Wang, H. and Li, J. (2020), "Bayesian Finite Element Model Updating of a Long-Span Suspension Bridge Utilizing Hybrid Monte Carlo Simulation and Kriging Predictor", KSCE J. Civil Eng., 24(2), 569-579. http://doi.org/10.1007/s12205-020-0983-4
- Martino, L. (2018), "A review of multiple try MCMC algorithms for signal processing", Digital Signal Process., 75, 134-152. http://doi.org/10.1016/j.dsp.2018.01.004
- Mei, L., Li, H., Zhou, Y., Wang, W. and Xing, F. (2019), "Substructural damage detection in shear structures via ARMAX model and optimal subpattern assignment distance", Eng. Struct., 191(JUL.15), 625-639. https://doi.org/10.1016/j.engstruct.2019.04.084
- Nagarajaiah, S. and Erazo, K. (2016), "Structural monitoring and identification of civil infrastructure in the United States", Struct. Monitor. Maint., Int. J., 3(1), 51-69. https://doi.org/10.12989/smm.2016.3.1.051
- Naser, A.H., Badr, A.H., Henedy, S.N., Ostrowski, K.A. and Imran, H. (2022), "Application of Multivariate Adaptive Regression Splines (MARS) approach in prediction of compressive strength of eco-friendly concrete", Case Studies Constr. Mater., 17, e01262. https://doi.org/10.1016/j.cscm.2022.e01262
- Panda, A.K. and Modak, S.V. (2022), "An FRF-based perturbation approach for stochastic updating of mass, stiffness and damping matrices", Mech. Syst. Signal Process., 166, p. 108416. https://doi.org/10.1016/j.ymssp.2021.108416
- Park, H.S., Kim, J. and Oh, B.K. (2019), "Model updating method for damage detection of building structures under ambient excitation using modal participation ratio", Measurement, 133, 251-261. http://doi.org/10.1016/j.measurement.2018.10.023
- Qasem, S.N. and Shamsuddin, S.M. (2011), "Radial basis function network based on time variant multi-objective particle swarm optimization for medical diseases diagnosis", Appl. Soft Comput., 11(1), 1427-1438. http://doi.org/10.1016/j.asoc.2010.04.014
- Qin, S.Q., Zhang, Y.Z., Zhou, Y.L. and Kang, J.T. (2018), "Dynamic model updating for bridge structures using the kriging model and PSO algorithm ensemble with higher vibration modes", Sensors, 18(6), 1879. https://doi.org/10.3390/s18061879
- Queipo, N.V. and Nava, E. (2019), "A gradient boosting approach with diversity promoting measures for the ensemble of surrogates in engineering", Struct. Multidiscipl. Optimiz., 60(4), 1289-1311. https://doi.org/10.1007/s00158-019-02325-4
- Ren, W.X. and Chen, H.B. (2010), "Finite element model updating in structural dynamics by using the response surface method", Eng. Struct., 32(8), 2455-2465. https://doi.org/10.1016/j.engstruct.2010.04.019
- Ren, X.Y., Wang, Y.M., Guo, T. and Wang, Q. (2020), "Robust Adaptive Beamforming Using Support Vector Machines", IEEE Access, 8, 137955-137965. http://doi.org/10.1109/Access.2020.3009993
- Roy, D.K. and Datta, B. (2019), "An ensemble meta-modelling approach using the Dempster-Shafer theory of evidence for developing saltwater intrusion management strategies in coastal aquifers", Water Resour. Manag., 33, 775-795. https://doi.org/10.1007/s11269-018-2142-y
- Sarmadi, H., Entezami, A., Saeedi Razavi, B. and Yuen, K.V. (2021), "Ensemble learning-based structural health monitoring by Mahalanobis distance metrics", Struct. Control Health Monitor., 28(2), e2663. https://doi.org/10.1002/stc.2663
- Sener, O. and Savarese, S. (2017), "Active learning for convolutional neural networks: A core-set approach", arXiv preprint arXiv:1708.00489. https://doi.org/10.48550/arXiv.1708.00489
- Siddiqui, Y., Valentin, J. and Niessner, M. (2020), "Viewal: Active learning with viewpoint entropy for semantic segmentation", Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
- Sotoudehnia, E., Shahabian, F. and Sani, A.A. (2019), "An iterative method for damage identification of skeletal structures utilizing biconjugate gradient method and reduction of search space", Smart Struct. Syst., Int. J., 23(1), 45-60. https://doi.org/10.12989/sss.2019.23.1.045
- Sousa, H., Santos, L.O. and Chryssanthopoulos, M. (2019), "Quantifying monitoring requirements for predicting creep deformations through Bayesian updating methods", Struct. Safety, 76, 40-50. http://doi.org/10.1016/j.strusafe.2018.06.002
- Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., NguyenNgoc, L. and Wahab, M.A. (2018), "Model updating for Nam O bridge using particle swarm optimization algorithm and genetic algorithm", Sensors, 18(12), 4131. http://doi.org/ARTN 413110.3390/s18124131
- Vapnik, V. (1999), The Nature of Statistical Learning Theory, Springer Science & Business Media.
- Wang, Z. and Cha, Y.-J. (2021), "Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage", Struct. Health Monitor., 20(1), 406-425. https://doi.org/10.1177/1475921720934051
- Wang, Z.Y. and Shafieezadeh, A. (2020), "Highly efficient Bayesian updating using metamodels: An adaptive Kriging-based approach", Struct. Safety, 84, 101915. https://doi.org/10.1016/j.strusafe.2019.101915
- Wang, Y.H., Lv, J., Feng, Y., Dai, B.W., Wang, C., Wu, J. and Chen, Z.Y. (2021), "Implementation of online model updating with ANN method in substructure pseudo-dynamic hybrid simulation", Smart Struct. Syst., Int. J., 28(2), 261-273. https://doi.org/10.12989/sss.2021.28.2.261
- Weng, S., Zhu, H., Xia, Y., Li, J. and Tian, W. (2020), "A review on dynamic substructuring methods for model updating and damage detection of large-scale structures", Adv. Struct. Eng., 23(3), 584-600. https://doi.org/10.1177/1369433219872429
- Xing, Z.X., Qu, R.Z., Zhao, Y., Fu, Q., Ji, Y. and Lu, W.X. (2019), "Identifying the release history of a groundwater contaminant source based on an ensemble surrogate model", J. Hydrol., 572, 501-516. http://doi.org/10.1016/j.jhydrol.2019.03.020
- Ye, P.C., Pan, G. and Dong, Z.M. (2018), "Ensemble of surrogate based global optimization methods using hierarchical design space reduction", Struct. Multidiscipl. Optimiz., 58(2), 537-554. http://doi.org/10.1007/s00158-018-1906-6
- Zhang, Y., Kim, C.W., Tee, K.F., Garg, A. and Garg, A. (2018), "Long-term health monitoring for deteriorated bridge structures based on Copula theory", Smart Struct. Syst., Int. J., 21(2), 171-185. http://doi.org/10.12989/sss.2018.21.2.171
- Zhang, Y., Kim, C.W. and Lin, J.M. (2019), "Removing Environmental Influences in Health Monitoring for Steel Bridges Through Copula Approaches", Int. J. Steel Struct., 19(3), 888-895. http://doi.org/10.1007/s13296-018-0170-3
- Zhang, Y., Wei, K., Shen, Z.H., Bai, X.W., Lu, X.Z. and Soares, C.G. (2020), "Economic impact of typhoon-induced wind disasters on port operations: A case study of ports in China", Int. J. Disaster Risk Reduct., 50. https://doi.org/10.1016/j.ijdrr.2020.101719
- Zhu, Z., Au, S.K., Li, B. and Xie, Y.L. (2020), "Bayesian operational modal analysis with multiple setups and multiple (possibly close) modes", Mech. Syst. Signal Process., 150, 107261. https://doi.org/10.1016/j.ymssp.2020.107261
- Zhu, H.P., Li, J.J., Tian, W., Weng, S., Peng, Y.C., Zhang, Z.X. and Chen, Z.D. (2021), "An enhanced substructure-based response sensitivity method for finite element model updating of largescale structures", Mech. Syst. Signal Process., 154, 107359. https://doi.org/10.1016/j.ymssp.2020.107359