• Title/Summary/Keyword: ensemble of surrogate

Search Result 6, Processing Time 0.018 seconds

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

Energy Efficient Design of a Jet Pump by Ensemble of Surrogates and Evolutionary Approach

  • Husain, Afzal;Sonawat, Arihant;Mohan, Sarath;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.3
    • /
    • pp.265-276
    • /
    • 2016
  • Energy systems working coherently in different conditions may not have a specific design which can provide optimal performance. A system working for a longer period at lower efficiency implies higher energy consumption. In this effort, a methodology demonstrated by a jet pump design and optimization via numerical modeling for fluid dynamics and implementation of an evolutionary algorithm for the optimization shows a reduction in computational costs. The jet pump inherently has a low efficiency because of improper mixing of primary and secondary fluids, and multiple momentum and energy transfer phenomena associated with it. The high fidelity solutions were obtained through a validated numerical model to construct an approximate function through surrogate analysis. Pareto-optimal solutions for two objective functions, i.e., secondary fluid pressure head and primary fluid pressure-drop, were generated through a multi-objective genetic algorithm. For the jet pump geometry, a design space of several design variables was discretized using the Latin hypercube sampling method for the optimization. The performance analysis of the surrogate models shows that the combined surrogates perform better than a single surrogate and the optimized jet pump shows a higher performance. The approach can be implemented in other energy systems to find a better design.

Development of data assimilation technique using a surrogate model (대체모형을 이용한 자료동화기법 개발)

  • Kim, Jongho;Tran, Vinh Ngoc
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.381-381
    • /
    • 2020
  • 자료동화(Data Assimilation) 기법은 실시간 수문학적 예측에 있어 정확도 향상을 위해 필수적인 과정이다. 가장 대중적으로 사용되는 기법들 중 하나가 모델 상태변수와 매개변수를 동시에 업데이트할 수 있는 이중 앙상블 칼만 필터(Dual Ensemble Kalman Filter)이다. 이 방법은 정확도 개선 및 적용의 용이성 때문에 많은 연구 분야에서 사용되어져 왔지만, 앙상블을 생성하는 과정에서 상당시간이 소요되는 단점이 존재한다. 본 연구에서는 상태변수와 매개변수를 동시에 업데이트 하면서 홍수 예측의 정확성을 보장할 뿐만 아니라, 앙상블 생성에 있어 계산 효율을 크게 향상시킬 수 있는 기법을 제안한다. Polynomial Chaos Expansion(PCE) 기법을 사용하여 앙상블 칼만 필터를 모방(mimic)할 수 있는 새로운 대체필터(Surrogate Filter)를 개발하는 것을 목표로 한다. 구체적으로 대체필터를 구성하기 위한 다양한 필터를 설계하였다. 첫째 시간에 대해서 PCE가 변화하지 않는 '불변 필터'(즉, 전체 예측기간에 대해 하나의 필터를 사용하여 자료동화할 수 있는 대체필터)와, 매 시간마다 PCE가 변화하는 '시변 필터'(즉, 예측하는 매 시간마다 새로운 필터를 생성해야 하는 대체필터)를 설계하여 적용성, 정확성, 예측성 등을 비교하였다. 또한, PCE의 하이퍼 매개변수를 최적화하기 위한 최적의 프레임 워크가 제안되어, 대체필터를 구축하는 데 효율을 높이고 PCE의 과적합(overfitting) 현상을 피할 수 있도록 하였다. 본 연구에서 제안된 기법은 기존 단일 및 이중 앙상블 칼만 필터(EnKF)의 결과와 비교 검증하였으며, 그 결과는 다음과 같다. (1) 대체필터의 대부분은 원래 EnKF와 비슷한 정도의 불확실성을 설명할 수 있음; (2) 모든 대체 필터는 선행시간이 짧은 경우의 예측에 있어 우수한 결과를 제공하며, 시변 필터가 불변 필터보다 더 정확한 예측 결과를 제공함; (3) 대체필터는 원래 앙상블 칼만필터보다 최대 500배 빠른 속도로 성능을 향상시킬 수 있음. 제안된 대체필터는 자료동화를 수행하는 기존필터와 비슷한 정도의 정확성, 매우 향상된 효율성을 보장함을 확인할 수 있었다.

  • PDF

Effect of input variable characteristics on the performance of an ensemble machine learning model for algal bloom prediction (앙상블 머신러닝 모형을 이용한 하천 녹조발생 예측모형의 입력변수 특성에 따른 성능 영향)

  • Kang, Byeong-Koo;Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.417-424
    • /
    • 2021
  • Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.