Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1I1A1A01073676) and was supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21CTAP-C164155-01).
References
- Ali, A., Sandhu, T.Y. and Usman, M. (2019), "Ambient vibration testing of a pedestrian bridge using low-cost accelerometers for SHM applications", Smart Cities, 2(1), 20-30. https://doi.org/10.3390/smartcities2010002
- Bodeux, J.B. and Golinval, J.C. (2001), "Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures", Smart Mater. Struct., 10(3), 479. https://doi.org/10.1088/0964-1726/10/3/309
- Caicedo, J.M., Dyke, S.J. and Johnson, E.A. (2004), "Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: Simulated data", J. Eng. Mech., 130(1), 49-60. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:1(49)
- Chang, M. and Pakzad, S.N. (2013), "Modified natural excitation technique for stochastic modal identification", J. Struct. Eng., 139(10), 1753-1762. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000559
- Chiang, D.-Y. and Lin, C.-S. (2010), "Identification of modal parameters from ambient vibration data using eigensystem realization algorithm with correlation technique", J. Mech. Sci. Technol., 24(12), 2377-2382. https://doi.org/10.1007/s12206-010-1005-0
- Farrar, C. and James Iii, G. (1997), "System identification from ambient vibration measurements on a bridge", J. Sound Vib., 205(1), 1-18. https://doi.org/10.1006/jsvi.1997.0977
- Felber, A.J. (1994), Development of a hybrid bridge evaluation system, University of British Columbia
- Juang, J.-N. (1994), Applied system identification, Prentice-Hall, Inc.
- Kaloop, M., Elsharawy, M., Salah, B., Hu, J. and Kim, D. (2020), "Performance assessment of bridges using short-period structural health monitoring system: Sungsu bridge case study", Smart Struct. Syst., Int. J., 26(5), 605-617. https://doi.org/10.12989/sss.2020.26.5.667
- Liu, C., Teng, J. and Peng, Z. (2020), "Optimal sensor placement for bridge damage detection using deflection influence line", Smart Struct. Syst., Int. J., 25(2), 169-181. https://doi.org/10.12989/sss.2020.25.2.169
- Ljung, L. (1987), "Theory for the user", System Identification.
- Moore, E.H. (1920), "On the reciprocal of the general algebraic matrix", Bull. Am. Math. Soc., 26, 394-395.
- Park, K., Kim, S. and Torbol, M. (2016), "Operational modal analysis of reinforced concrete bridges using autoregressive model", Smart Struct. Syst., Int. J., 17(6), 1017-1030. https://doi.org/10.12989/sss.2016.17.6.1017
- Qu, C.-X., Yi, T.-H., Yang, X.-M. and Li, H.-N. (2017), "Spurious mode distinguish by eigensystem realization algorithm with improved stabilization diagram", Struct. Eng. Mech., Int. J., 63(6), 743-750. https://doi.org/10.12989/sem.2017.63.6.743
- Qu, C.X., Yi, T.H. and Li, H.N. (2019), "Mode identification by eigensystem realization algorithm through virtual frequency response function", Struct. Control Health Monitor., 26(10), e2429. https://doi.org/10.1002/stc.2429
- Sim, S.-H., Spencer Jr, B. and Nagayama, T. (2011), "Multimetric sensing for structural damage detection", J. Eng. Mech., 137(1), 22-30. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000199
- Sung, S.-H., Park, J.-W., Nagayama, T. and Jung, H.-J. (2013), "A multi-scale sensing and diagnosis system combining accelerometers and gyroscopes for bridge health monitoring", Smart Mater. Struct., 23(1), 015005. https://doi.org/10.1088/0964-1726/23/1/015005
- Yang, J., Sun, Y., Jing, H. and Li, P. (2023), "An improved NExT method for modal identification with tests validation", Eng. Struct., 274, 115192. https://doi.org/10.1016/j.engstruct.2022.115192