DOI QR코드

DOI QR Code

Stability of the porous orthotropic laminated composite plates via the hyperbolic shear deformation theory

  • Ferruh Turan (Department of Civil Engineering of Engineering Faculty, Ondokuz Mayis University)
  • 투고 : 2022.07.01
  • 심사 : 2023.07.06
  • 발행 : 2023.07.25

초록

This study investigates the influences of porosity on the stability of the orthotropic laminated plates under uniaxial and biaxial loadings based on the hyperbolic shear deformation theory. Three different porosity distribution are considered with three specific functions through the plate thickness. The stability equations of porous orthotropic laminated plates are derived by the virtual work principle. Applying the Galerkin method to partial differential equations, the critical buckling load relation of porous orthotropic laminated plates is obtained. After validating the accuracy of the proposed formulation in accordance with the available literature, a parametric analysis is performed to observe the sensitivity of the critical buckling load to shear deformation, porosity, orthotropy, loading factor, and different geometric properties.

키워드

참고문헌

  1. Abid, M., Koubaa, S., Abdelkefi, A., Frikha, A. and Dammak, F. (2021), "Numerical modeling of porous functionally graded shells response in large deflection", Comput. Mathem. Appl., 104, 59-70. https://doi.org/10.1016/j.camwa.2021.11.005.
  2. Ambartsumian, S. (1958), "On the theory of bending plates", Izv Otd Tech Nauk AN SSSR, 5(5), 69-77.
  3. Ansari, R., Hassani, R., Gholami, R. and Rouhi, H. (2021), "Buckling and postbuckling of plates made of fg-gpl-reinforced porous nanocomposite with various shapes and boundary conditions", Int. J. Struct. Stab. Dyn., 21(5). https://doi.org/10.1142/S0219455421500632.
  4. Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008.
  5. Bekkaye, T.H.L., Fahsi, B., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2020), "Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory", Comput. Concr., 26(5), 439-450. 10.12989/cac.2020.26.5.439
  6. Coskun, S., Kim, J. and Toutanji, H. (2019), "Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory", J. Compos. Sci., 3(1), 1-22. https://doi.org/10.3390/jcs3010015.
  7. Dhuria, M., Grover, N. and Goyal, K. (2021), "Influence of porosity distribution on static and buckling responses of porous functionally graded plates", Structures, 34 1458-1474. https://doi.org/10.1016/j.istruc.2021.08.050.
  8. Esmaeilzadeh, M., Kadkhodayan, M., Mohammadi, S. and Turvey, G.J. (2020), "Nonlinear dynamic analysis of moving bilayer plates resting on elastic foundations", Appl. Mathem. Mech., 41(3), 439-458. https://doi.org/10.1007/s10483-020-2587-8.
  9. Farzaneh Joubaneh, E., Mojahedin, A., Khorshidvand, A.R. and Jabbari, M. (2015), "Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load", J. Sandw. Struct. Mater., 17(1), 3-25. 10.1177/1099636214554172.
  10. Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115
  11. Gupta, A. and Talha, M. (2018a), "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates", Mech. Based Des. Struct. Machines, 46(6), 693-711. https://doi.org/10.1080/15397734.2018.1449656
  12. Gupta, A. and Talha, M. (2018b), "Stability characteristics of porous functionally graded plate in thermal environment", IOP Conf. Ser. Mater. Sci. Eng., 330(1), 012011. https://doi.org/10.1088/1757-899X/330/1/012011
  13. Jabbari, M., Haghi Choobar, M., Mojahedin, A. and Farzaneh Joubaneh, E. (2015), "Magnetic stability of functionally graded soft ferromagnetic porous rectangular plate", J. Solid Mech., 7(4), 416-428. https://doi.org/20.1001.1.20083505.2015.7.4.4.1. 1001.1.20083505.2015.7.4.4.1
  14. Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014a), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Thermal Stresses, 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768.
  15. Jabbari, M., Joubaneh, E.F., Khorshidvand, A.R. and Eslami, M.R. (2013), "Buckling analysis of porous circular plate with piezoelectric actuator layers under uniform radial compression", Int. J. Mech. Sci., 70, 50-56. https://doi.org/10.1016/j.ijmecsci.2013.01.031
  16. Jabbari, M., Mojahedin, A. and Haghi, M. (2014b), "Buckling analysis of thin circular FG plates made of saturated porous-soft ferromagnetic materials in transverse magnetic field", Thin-Wall. Struct., 85 50-56. https://doi.org/10.1016/j.tws.2014.07.018.
  17. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. 10.1016/S0020-7683(02)00647-9.
  18. Khazaei, P. and Mohammadimehr, M. (2020), "Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory", Struct. Eng. Mech., 76(1), 27-56. https://doi.org/10.12989/sem.2020.76.1.027.
  19. Khorshidvand, A.R. and Damercheloo, A.R. (2021), "Bending, axial buckling and shear buckling analyses of FG-porous plates based on a refined plate theory", Aust. J. Mech. Eng., 1-20. https://doi.org/10.1080/14484846.2021.1913869.
  20. Kiarasi, F., Babaei, M., Asemi, K., Dimitri, R. and Tornabene, F. (2021), "Three-dimensional buckling analysis of functionally graded saturated porous rectangular plates under combined loading conditions", Appl. Sci., 11(21), 1-21. https://doi.org/10.3390/app112110434.
  21. Kumar, R., Lal, A., Singh, B.N. and Singh, J. (2022), "Numerical simulation of the thermomechanical buckling analysis of bidirectional porous functionally graded plate using collocation meshfree method", Proc. Inst. Mech. Eng. Part L J. Mat. Des. Appl., 236(4), 787-807. https://doi.org/10.1177/14644207211058573.
  22. Magnucka-Blandzi, E. (2008), "Axi-symmetrical deflection and buckling of circular porous-cellular plate", Thin-Wall. Struct., 46(3), 333-337. https://doi.org/10.1016/j.tws.2007.06.006.
  23. Magnucki, K., Malinowski, M. and Kasprzak, J. (2006), "Bending and buckling of a rectangular porous plate", Steel Compos. Struct., 6(4), 319-333. https://doi.org/10.12989/scs.2006.6.4.319.
  24. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Mathem. Modelling, 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.
  25. Malikan, M., Tornabene, F. and Dimitri, R. (2018), "Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals", Mater. Res. Express, 5(9). https://doi.org/10.1088/2053-1591/aad4c3.
  26. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.
  27. Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Wall. Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.
  28. Mojahedin, A., Joubaneh, E.F. and Jabbari, M. (2014), "Thermal and mechanical stability of a circular porous plate with piezoelectric actuators", Acta Mech., 225(12), 3437-3452. https://doi.org/10.1007/s00707-014-1153-x.
  29. Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Sci. Technol., 8(2), 81-89. 10.1016/0015-0568(75)90005-6.
  30. Panah, M., Khorshidvand, A.R., Khorsandijou, S.M. and Jabbari, M. (2019), "Pore pressure and porosity effects on bending and thermal postbuckling behavior of FG saturated porous circular plates", J. Thermal Stresses, 42(9), 1083-1109. https://doi.org/10.1080/01495739.2019.1614502.
  31. Pathan, F., Singh, S., Natarajan, S. and Watts, G. (2022), "An analytical solution for the static bending of smart laminated composite and functionally graded plates with and without porosity", Archive of Applied Mechanics, 92(3), 903-931. https://doi.org/10.1007/s00419-021-02080-3
  32. Phan, N.D. and Reddy, J.N. (1985), "Analysis of laminated composite plates using a higher-order shear deformation theory", International Journal for Numerical Methods in Engineering, 21(12), 2201-2219. https://doi.org/10.1002/nme.1620211207
  33. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J Appl Mech Trans ASME, 51(4), 745-752. https://doi.org/10.1115/1.3167719
  34. Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", Journal of Sound and Vibration, 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9
  35. Reissner, E. (1974), "On Tranverse Bending of Plates, Including The Effect of Transverse Shear Deformation", International Journal of Solids and Structures, 11 569-573. https://doi.org/10.1016/0020-7683(75)90030-X
  36. Rezaei, A.S. and Saidi, A.R. (2017), "Buckling response of moderately thick fluid-infiltrated porous annular sector plates", Acta Mechanica, 228(11), 3929-3945. https://doi.org/10.1007/s00707-017-1908-2
  37. Shi, P., Dong, C., Sun, F., Liu, W. and Hu, Q. (2018), "A new higher order shear deformation theory for static, vibration and buckling responses of laminated plates with the isogeometric analysis", Composite Structures, 204 342-358. https://doi.org/10.1016/j.compstruct.2018.07.080
  38. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650
  39. Thai, H.T. and Choi, D.H. (2013a), "A simple first-order shear deformation theory for laminated composite plates", Composite Structures, 106 754-763. 10.1016/j.compstruct.2013.06.013
  40. Thai, H.T. and Choi, D.H. (2013b), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Composite Structures, 101 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019
  41. Touratier, M. (1991), "An efficient standard plate theory", International Journal of Engineering Science, 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  42. Turan, F., Basoglu, M.F. and Zerin, Z. (2017), "Analytical solution for bending and buckling response of laminated non-homogeneous plates using a simplified-higher order theory", Challenge Journal of Structural Mechanics, 3(1), 1-16. https://doi.org/10.20528/cjsmec.2017.02.001
  43. Wei, G. and Tahouneh, V. (2021), "Temperature dependent buckling analysis of graded porous plate reinforced with graphene platelets", Steel and Composite Structures, 39(3), 275-290. https://doi.org/10.12989/scs.2021.39.3.275
  44. Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel and Composite Structures, 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633
  45. Yuan, Y., Zhao, K. and Xu, K. (2019), "Enhancing the static behavior of laminated composite plates using a porous layer", Structural Engineering and Mechanics, 72(6), 763-774. https://doi.org/10.12989/sem.2019.72.6.763
  46. Yuksel, Y.Z. and Akbas, S.D. (2021), "Hygrothermal stress analysis of laminated composite porous plates", Structural Engineering and Mechanics, 80(1), 1-13. https://doi.org/10.12989/sem.2021.80.1.001
  47. Zenkour, A.M. and Aljadani, M.H. (2019), "Porosity effect on thermal buckling behavior of actuated functionally graded piezoelectric nanoplates", European Journal of Mechanics, A/Solids, 78. https://doi.org/10.1016/j.euromechsol.2019.103835
  48. Zenkour, A.M. and Aljadani, M.H. (2022), "Buckling response of functionally graded porous plates due to a quasi-3D refined theory", Mathematics, 10(4), 1-20. https://doi.org/10.3390/math10040565.
  49. Zghal, S., Ataoui, D. and Dammak, F. (2022a), "Free vibration analysis of porous beams with gradually varying mechanical properties", Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 236(3), 800-812. https://doi.org/10.1177/14750902211047746.
  50. Zghal, S., Ataoui, D. and Dammak, F. (2022b), "Static bending analysis of beams made of functionally graded porous materials", Mech. Based Des. Struct. Machines, 50(3), 1012-1029. https://doi.org/10.1080/15397734.2020.1748053.
  51. Zghal, S. and Dammak, F. (2021a), "Buckling responses of porous structural components with gradient power-based and sigmoid material variations under different types of compression loads", Compos. Struct., 273 114313. https://doi.org/10.1016/j.compstruct.2021.114313.
  52. Zghal, S. and Dammak, F. (2021b), "Vibration characteristics of plates and shells with functionally graded pores imperfections using an enhanced finite shell element", Comput. Mathem. Appl., 99 52-72. https://doi.org/10.1016/j.camwa.2021.08.001.