DOI QR코드

DOI QR Code

Induction of Autophagy by Rosa acicularis Leaves Extracts in RAW264.7 Cells

인가목(Rosa acicularis Lindl.) 잎 추출물의 대식세포에서 자가포식 유도활성

  • Jeong Won Choi (Department of Medicinal Plant Resources, Andong National University) ;
  • Jin Boo Jeong (Department of Medicinal Plant Resources, Andong National University)
  • 최정원 (국립안동대학교 생약자원학과) ;
  • 정진부 (국립안동대학교 생약자원학과)
  • Received : 2023.01.19
  • Accepted : 2023.05.15
  • Published : 2023.08.01

Abstract

Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, water extracts from Rosa acicularis leaves (RAL) increased the production of immunostimulatory mediators and phagocytic activity in RAW264.7 cells. RAL increased p62/SQSTM1 expression. Inhibition of TLR4, JNK, and PI3K/AKT blocked RAL-mediated increase of p62/SQSTM1. RAL activated JNK and PI3K/AKT signaling. RAL-mediated activations of JNK and PI3K/AKT signaling were reversed by TLR4 inhibition. Taken together, it is believed that RAL-mediated autophagy may be dependent on activating via TLR4-dependent activation of JNK and PI3K/AKT signaling in macrophages.

본 연구에서 인가목 잎 추출물이 RAW264.7 세포에서 면역자 극인자의 생성을 증가시키고 포식작용의 활성화를 유도한다는 것을 확인하였다. 게다가 인가목 잎 추출물은 TLR4 의존적 JNK와 PI3K/AKT 신호전달 활성화를 통해 자가포식을 유도한다는 것을 확인하였다. 대식세포의 활성화와 자가포식은 선천면역반응과 후천면역반응을 향상시킬 수 있는 주요 전략 중 하나이기 때문에 인가목 잎 추출물은 인체의 면역반응을 증가시킬 수 있는 건강기능식품이나 보조제로 활용될 수 있을 것으로 생각된다. 그러나 본 연구에서는 작용기전을 구명하기 위해 관련된 단일억제제를 사용하였기 때문에 명확한 작용기전 구명을 위해 다양한 억제제 또는 siRNA를 활용한 추가적 연구가 필요하다고 판단된다.

Keywords

Acknowledgement

본 연구는 한국연구재단 이공분야 중점연구소지원사업(NRF-2018R1A6A1A03024862)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Barker, R.N., L.P. Erwig, K.S. Hill, A. Devine, W.P. Pearce and A.J. Rees. 2002. Antigen presentation by macrophages is enhanced by the uptake of necrotic, but not apoptotic, cells. Clin. Exp. Immunol. 127(2):220-225. https://doi.org/10.1046/j.1365-2249.2002.01774.x
  2. Chou, Y.J., C.C. Lin, I. Dzhagalov, N.J. Chen, C.H. Lin, C.C. Lin, S.T. Chen, K.H. Chen and S.L. Fu. 2020. Vaccine adjuvant activity of a TLR4-activating synthetic glycolipid by promoting autophagy. Sci. Rep. 10:8422.
  3. Coffman, R.L., A. Sher and R.A. Seder. 2010. Vaccine adjuvants: Putting innate immunity to work. Immunity 33:492-503. https://doi.org/10.1016/j.immuni.2010.10.002
  4. Duque, G.A. and A. Descoteaux. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5:491.
  5. Geum, N.G. and J.B. Jeong. 2021. Effect of fruits from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee on macrophage activation. Korean J. Plant Res. 34(4):377-383.
  6. Bah, A. and I. Vergne. 2017. Macrophage autophagy and bacterial infections. Front. Immunol. 8:1483.
  7. Hirayama, D., T. Iida and H. Nakase. 2018. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 19(1):92.
  8. Huang, C.T., C.Y. Hung, T.C. Chen, C.Y. Lin, Y.C. Lin, C.S. Chang, Y.C. He, Y.L. Huang and A. Dutta. 2017. Rapamycin adjuvant and exacerbation of severe influenza in an experimental mouse model. Sci. Rep. 7(1):4136.
  9. Kirkegaard, K., M.P. Taylor and W.T. Jackson. 2004. Cellular autophagy: Surrender, avoidance and subversion by micorganisms. Nat. Rev. Microbiol. 2:301-314. https://doi.org/10.1038/nrmicro865
  10. Komatsu, M. and Y. Ichimura. 2010. Physiological significance of selective degradation of p62 by autophagy. FEBS Lett. 584:1374-1378. https://doi.org/10.1016/j.febslet.2010.02.017
  11. Lamark, T., V. Kirkin, I, Dikic and T. Johansen. 2009. NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8:1986-1990. https://doi.org/10.4161/cc.8.13.8892
  12. Liu, W.J., Y. Lin, W.F. Huang, L.J. Guo, Z.G. Xu, H.L. Wu, C. Yang and H.F. Liu. 2016. p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell. Mol. Biol. Lett. 21:29.
  13. Olennikov, D.N., V.V. Chemposov and N.K. Chirikova. 2021. Metabolites of prickly rose: Chemodiversity and digestive-enzyme-inhibiting potential of Rosa acicularis and the main ellagitannin rugosin D. Plants 10(11):2525.
  14. Puissant, A., N. Fenouille and P. Auberger. 2012. When autophagy meets cancer through p62/SQSTM1. Am. J. Cancer Res. 2:397-413.
  15. Schenten, D. and R. Medzhitov. 2011. The control of adaptive immune responses by the innate immune system. Adv. Immunol. 109:87-124. https://doi.org/10.1016/B978-0-12-387664-5.00003-0
  16. Sieweke, M.H. and J.E. Allen. 2013. Beyond stem cells: Self-renewal of differentiated macrophages. Science 342(6161):1242974.
  17. Steinhagen, F., T. Kinjo, C. Bode and D.M. Klinman. 2011. TLR-based immune adjuvants. Vaccine 29:3341-3355. https://doi.org/10.1016/j.vaccine.2010.08.002
  18. Van der Vaart, M., C.J. Korbee, G.E.M. Lamers, A.C. Tengeler, R. Hosseini, M.C. Haks, T.H.M. Ottenhoff, H.P. Spaink and A.H. Meijer. 2014. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense. Cell Host Microbe 15(6):753-767. https://doi.org/10.1016/j.chom.2014.05.005
  19. Wu, M.Y. and J.H. Lu. 2020. Autophagy and macrophage functions: Inflammatory response and phagocytosis. Cells 9(1):70.
  20. Xu, Y., C. Jagannath, X.D. Liu, A. Sharafkhaneh, K.E. Kolodziejska and N.T. Eissa. 2007. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27(1):135-144. https://doi.org/10.1016/j.immuni.2007.05.022
  21. Yazid, M.D. and C. Hung-Chih. 2021. Perturbation of PI3K/Akt signaling affected autophagy modulation in dystrophin-deficient myoblasts. Cell Commun. Signal. 19(1):105.
  22. Zheng, Y.T., S. Shahnazari, A. Brech, T. Lamark, T. Johansen and J.H. Brumell. 2009. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183(9):5909-5916. https://doi.org/10.4049/jimmunol.0900441