References
- United States Department of Homeland Security, "Team Coordination Training, Student Guide", May 2004.
- P. Barford, Y. Chen, A. Goyal, Z. Li, V. Paxson, and V. Yegneswaran, "Employing Honeynets For Network Situational Awareness", In S. Jajodia et al., (eds.), Cyber Situational Awareness, Advances in Information Security 46, DOI 10.1007/978-1-4419-0140-8.
- K. Scarfone, and P. Mell, "Guide to Intrusion Detection and Prevention Systems (IDPS)", Recommendations of the National Institute of Standards and Technology. [Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf.
- Onwubiko C, "Functional requirements of Situational Awareness in Computer Network Security", In Proc of the IEEE International Conference on Intelligence and Security Informatics, pp. 209-213, June 2009.
- M. Qiu , L. Zhang , Z. Ming , Z. Chen , X. Qin , and L. Yang, "Security-aware optimization for ubiquitous computing systems with SEAT graph approach", J. Comput. Syst. Sci, Vol. 79, no. 5, pp. 518-529, 2013. https://doi.org/10.1016/j.jcss.2012.11.002
- E. Hernndez-Pereira , J. Surez-Romero , O. Fontenla-Romero , and A. Alonso-Betanzos, "Conversion methods for symbolic features: a comparison applied to an intrusion detection problem", Expert Syst. Appl, Vol. 36, no. 7, pp. 10612-10617, 2009. https://doi.org/10.1016/j.eswa.2009.02.054
- Q. Yan and F. Yu, "Distributed denial of service attacks in software-defined networking with cloud computing", IEEE Commun. Mag, Vol. 53, no. 4, pp. 52-59, 2015. https://doi.org/10.1109/MCOM.2015.7081075
- Sumaiya Thaseen. I and Aswani Kumar. C, "Intrusion detection model using fusion of chi-square feature selection and multi class SVM", Journal of King Saud University - Computer and Information Sciences, 2016. DOI: http://dx.doi.org/10.1016/j.jksuci.2015.12.004.
- Rana Aamir Raza Ashfaq, Xi-Zhao Wang, Joshua Zhexue Huang, Haider Abbas, and Yu-Lin He, "Fuzziness based semi-supervised learning approach for intrusion detection system", Information Sciences, Vol. 378, pp. 484-497, Feb. 2017. DOI: http://dx.doi.org/10.1016/j.ins.2016.04.019.
- V.Jyothsna and V.V.Rama Prasad, "FCAAIS: Anomaly based network intrusion detection through feature correlation analysis and association impact scale", ICT Express, Vol. 2, no. 3, pp. 103-116, 2016. https://doi.org/10.1016/j.icte.2016.08.003
- Wathiq Laftah Al-Yaseen , Zulaiha Ali Othman , and Mohd Zakree Ahmad Nazri, "Multi-Level Hybrid Support Vector Machine and Extreme Learning Machine Based on Modified K-means for Intrusion Detection System", Expert Systems with Applications, Vol. 67, pp. 296-303, Jan. 2017. DOI: http://dx.doi.org/10.1016/j.eswa.2016.09.041.
- Hamid Bostani and Mansour Sheikhan, "Modification of Supervised OPF-based Intrusion Detection Systems using Unsupervised Learning and Social Network Concept", Pattern Recognition, Vol. 62, pp. 56-72, Feb. 2017. DOI: http://dx.doi.org/10.1016/j.patcog.2016.08.027.
- G.R. Kumar, N. Mangathayaru, G. Narsimha, and G.S. Reddy, "A Self Constructing Feature Clustering Approach for Anomaly Detection in IoT", Future Generation Computer Systems, Vol. 74, pp. 417-429, Sep. 2017. DOI: http://dx.doi.org/10.1016/j.future.2016.12.040.
- Jamali. S, and Jafarzadeh. P, "An intelligent intrusion detection system by using hierarchically structured learning automata", Neural Comput & Applic, Vol. 28, no. 5, pp. 1001-1008, May 2017. DOI: https://doi.org/10.1007/s00521-015-2116-4.
- Bostani. H, and Sheikhan. M, "Hybrid of Binary Gravitational Search Algorithm and Mutual Information for Feature Selection in Intrusion Detection Systems", Soft Comput, Vol. 21, no. 9, pp. 2307-2324, May 2017. DOI: https://doi.org/10.1007/s00500-015-1942-8.
- Dash. T, "A Study on Intrusion Detection using Neural Networks Trained with Evolutionary Algorithms", Soft Comput, Vol. 21, no. 10, pp. 2687-2700, May 2017. DOI: https://doi.org/10.1007/s00500-015-1967-z.
- Kapil Kumar Gupta, Baikunth Nath, and Ramamohanarao Kotagiri, "Layered Approach Using Conditional Random Fields for Intrusion Detection", IEEE Transactions on Dependable and Secure Computing, Vol. 7, no. 1, pp. 35 - 49, Jan-March 2010. https://doi.org/10.1109/TDSC.2008.20
- J. Lafferty, A. McCallum, and F. Pereira, "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data", In Proc. of 18th Int'l Conf. Machine Learning (ICML '01), pp. 282-289, 2001.
- NSL-KDD Dataset. Retrieved from http://www.unb.ca/cic/research/datasets/nsl.html.
- M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed analysis of the KDD CUP 99 data set", In Proc. 2nd IEEE International Conference on Computational Intelligence for Security and Defense Applications, USA: IEEE Press, pp. 53-58, 2009.
- David E. Goldberg, "Genetic algorithms in search, optimization and machine learning", Addison-Wesley, 1989.
- R Core Team, "R: A language and environment for statistical computing", R Foundation for Statistical Computing, Vienna, Austria, 2013. URL http://www.R-project.org/
- Ling-Yun Wu, "CRF: Conditional Random Fields. R package version 0.3-14", 2017. https://CRAN.R-project.org/package=CRF
- Eibe Frank, Mark A. Hall, and Ian H. Witten, "The WEKA Workbench", Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques", Morgan Kaufmann, Fourth Edition, 2016