참고문헌
- H. Zhou, X. Yang, H. Pan, and W. Guo, "An Android Malware Detection Approach Based on SIMGRU," IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3007571.
- O. C. Abikoye, B. A. Gyunka, and O. N. Akande, "Android malware detection through machine learning techniques: A review," Int. J. online Biomed. Eng., 2020, doi: 10.3991/ijoe.v16i02.11549.
- P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, "A novel dynamic android malware detection system with ensemble learning," IEEE Access, 2018, doi: 10.1109/ACCESS.2018.2844349.
- Y. C. Chen, H. Y. Chen, T. Takahashi, B. Sun, and T. N. Lin, "Impact of Code Deobfuscation and Feature Interaction in Android Malware Detection," IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3110408.
- A. T. Kabakus, "What static analysis can utmost offer for android malware detection," Inf. Technol. Control, 2019, doi: 10.5755/j01.itc.48.2.21457.
- Z. Ren, H. Wu, Q. Ning, I. Hussain, and B. Chen, "End-to-end malware detection for android IoT devices using deep learning," Ad Hoc Networks, 2020, doi: 10.1016/j.adhoc.2020.102098.
- S. Y. Yerima and S. Sezer, "DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection," IEEE Trans. Cybern., 2019, doi: 10.1109/TCYB.2017.2777960Y.
- J. Xu, Y. Li, R. H. Deng, and K. Xu, "SDAC: A Slow-Aging Solution for Android Malware Detection Using Semantic Distance Based API Clustering," IEEE Trans. Dependable Secur. Comput., 2022, doi: 10.1109/TDSC.2020.3005088.
- T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, "A multimodal deep learning method for android malware detection using various features," IEEE Trans. Inf. Forensics Secur., 2019, doi: 10.1109/TIFS.2018.2866319.
- X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, "Android malware detection based on system call sequences and LSTM," Multimed. Tools Appl., 2019, doi: 10.1007/s11042-017-5104-0.
- X. Liu, X. Du, X. Zhang, Q. Zhu, H. Wang, and M. Guizani, "Adversarial samples on android malware detection systems for IoT systems," Sensors (Switzerland), 2019, doi: 10.3390/s19040974.
- J. Lee, H. Jang, S. Ha, and Y. Yoon, "Android malware detection using machine learning with feature selection based on the genetic algorithm," Mathematics, 2021, doi: 10.3390/math9212813.
- Y. Yang, X. Du, Z. Yang, and X. Liu, "Android malware detection based on structural features of the function call graph," Electron., 2021, doi: 10.3390/electronics10020186.
- X. Chen et al., "Android HIV: A Study of Repackaging Malware for Evading Machine-Learning Detection," IEEE Trans. Inf. Forensics Secur., 2020, doi: 10.1109/TIFS.2019.2932228.
- X. Jiang, B. Mao, J. Guan, and X. Huang, "Android Malware Detection Using Fine-Grained Features," Sci. Program., 2020, doi: 10.1155/2020/5190138.
- P. Palumbo, L. Sayfullina, D. Komashinskiy, E. Eirola, and J. Karhunen, "A pragmatic android malware detection procedure," Comput. Secur., 2017, doi: 10.1016/j.cose.2017.07.013.
- S. Y. Yerima, S. Sezer, and I. Muttik, "Android malware detection using parallel machine learning classifiers," 2014. doi: 10.1109/NGMAST.2014.23.
- E. J. Alqahtani, R. Zagrouba, and A. Almuhaideb, "A survey on android malware detection techniques using machine learning Algorithms," 2019. doi: 10.1109/SDS.2019.8768729.
- J. D. Koli, "RanDroid: Android malware detection using random machine learning classifiers," 2018. doi: 10.1109/ICSESP.2018.8376705.
- R. Agrawal, V. Shah, S. Chavan, G. Gourshete, and N. Shaikh, "Android Malware Detection Using Machine Learning," 2020. doi: 10.1109/ic-ETITE47903.2020.491.
- S. Y. Yerima, M. K. Alzaylaee, A. Shajan, and P. Vinod, "Deep learning techniques for android botnet detection," Electron., 2021, doi: 10.3390/electronics10040519.
- "Graph Approach for android malware detection using machine learning techniques," Humanit. Nat. Sci. J., 2021, doi: 10.53796/hnsj21115.
- M. Kedziora, P. Gawin, M. Szczepanik, and I. Jozwiak, "ANDROID MALWARE DETECTION USING MACHINE LEARNING AND REVERSE ENGINEERING," 2018. doi: 10.5121/csit.2018.81709.
- R. Taheri, R. Javidan, M. Shojafar, Z. Pooranian, A. Miri, and M. Conti, "On defending against label flipping attacks on malware detection systems," Neural Comput. Appl., 2020, doi: 10.1007/s00521-020-04831-9.
- T. A. A. Abdullah, W. Ali, and R. Abdulghafor, "Empirical study on intelligent android malware detection based on supervised machine learning," Int. J. Adv. Comput. Sci. Appl., 2020, doi: 10.14569/IJACSA.2020.0110429.
- B. A. Gyunka and S. I. Barda, "Anomaly detection of android malware using One-Class K-Nearest Neighbours (OC-KNN)," Niger. J. Technol., 2020, doi: 10.4314/njt.v39i2.25.
- Y. Pan, X. Ge, C. Fang, and Y. Fan, "A Systematic Literature Review of Android Malware Detection Using Static Analysis," IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3002842.
- C. Li, K. Mills, D. Niu, R. Zhu, H. Zhang, and H. Kinawi, "Android Malware Detection Based on Factorization Machine," IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2958927.
- K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, "A Review of Android Malware Detection Approaches Based on Machine Learning," IEEE Access, 2020, doi: 10.1109/ACCESS.2020.3006143.
- S. K. Sasidharan and C. Thomas, "ProDroid - An Android malware detection framework based on profile hidden Markov model," Pervasive Mob. Comput., 2021, doi: 10.1016/j.pmcj.2021.101336.
- H. Chen, Z. Li, Q. Jiang, A. Rasool, and L. Chen, "A hierarchical approach for android malware detection using authorization-sensitive features," Electron., 2021, doi: 10.3390/electronics10040432.
- W. Zhang, N. Luktarhan, C. Ding, and B. Lu, "Android Malware detection using tcn with bytecode image," Symmetry (Basel)., 2021, doi: 10.3390/sym13071107.
- H. Sun, G. Xu, Z. Wu, and R. Quan, "Android Malware Detection Based on Feature Selection and Weight Measurement," Intell. Autom. Soft Comput., vol. 33, pp. 585-600, Jan. 2022, doi: 10.32604/iasc.2022.023874.