DOI QR코드

DOI QR Code

Precision Agriculture using Internet of Thing with Artificial Intelligence: A Systematic Literature Review

  • Noureen Fatima (Sukkur IBA University) ;
  • Kainat Fareed Memon (Sukkur IBA University) ;
  • Zahid Hussain Khand (Sukkur IBA University) ;
  • Sana Gul (Sukkur IBA University) ;
  • Manisha Kumari (Sukkur IBA University) ;
  • Ghulam Mujtaba Sheikh (Sukkur IBA University)
  • 투고 : 2023.07.05
  • 발행 : 2023.07.30

초록

Machine learning with its high precision algorithms, Precision agriculture (PA) is a new emerging concept nowadays. Many researchers have worked on the quality and quantity of PA by using sensors, networking, machine learning (ML) techniques, and big data. However, there has been no attempt to work on trends of artificial intelligence (AI) techniques, dataset and crop type on precision agriculture using internet of things (IoT). This research aims to systematically analyze the domains of AI techniques and datasets that have been used in IoT based prediction in the area of PA. A systematic literature review is performed on AI based techniques and datasets for crop management, weather, irrigation, plant, soil and pest prediction. We took the papers on precision agriculture published in the last six years (2013-2019). We considered 42 primary studies related to the research objectives. After critical analysis of the studies, we found that crop management; soil and temperature areas of PA have been commonly used with the help of IoT devices and AI techniques. Moreover, different artificial intelligence techniques like ANN, CNN, SVM, Decision Tree, RF, etc. have been utilized in different fields of Precision agriculture. Image processing with supervised and unsupervised learning practice for prediction and monitoring the PA are also used. In addition, most of the studies are forfaiting sensory dataset to measure different properties of soil, weather, irrigation and crop. To this end, at the end, we provide future directions for researchers and guidelines for practitioners based on the findings of this review.

키워드

참고문헌

  1. Chlingaryan, A., S. Sukkarieh, and B. Whelan, Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 2018. 151: p. 61-69. https://doi.org/10.1016/j.compag.2018.05.012
  2. Aneece, I. and P. Thenkabail, Accuracies Achieved in Classifying Five Leading World Crop Types and their Growth Stages Using Optimal Earth Observing-1 Hyperion Hyperspectral Narrowbands on Google Earth Engine. Remote Sensing, 2018. 10(12).
  3. Bu, F. and X. Wang, A smart agriculture IoT system based on deep reinforcement learning. Future Generation Computer Systems, 2019. 99: p. 500-507. https://doi.org/10.1016/j.future.2019.04.041
  4. AlZu'bi, S., et al., An efficient employment of internet of multimedia things in smart and future agriculture. Multimedia Tools and Applications, 2019. 78(20): p. 29581-29605. https://doi.org/10.1007/s11042-019-7367-0
  5. Kishore Kumar, C. and V. Venkatesh, Design and development of IOT based intelligent agriculture management system in greenhouse environment. International Journal of Engineering and Advanced Technology, 2019. 8(5 Special Issue 3): p. 47-52. https://doi.org/10.35940/ijeat.E1013.0785S319
  6. Hu, C., et al., Automatic Detection of Single Ripe Tomato on Plant Combining Faster R-CNN and Intuitionistic Fuzzy Set. IEEE Access, 2019. 7: p. 154683-154696. https://doi.org/10.1109/ACCESS.2019.2949343
  7. Murugan, D., A. Garg, and D. Singh, Development of an Adaptive Approach for Precision Agriculture Monitoring with Drone and Satellite Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017. 10(12): p. 5322-5328. https://doi.org/10.1109/JSTARS.2017.2746185
  8. Geng, L.W. and T.T. Dong, An Agricultural Monitoring System Based on Wireless Sensor and Depth Learning Algorithm. International Journal of Online Engineering, 2017. 13(12): p. 127-137. https://doi.org/10.3991/ijoe.v13i12.7885
  9. Ferrandez-Pastor, F.J., J.M. Garcia-Chamizo, and M. Nieto-Hidalgo, Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. 2018. 18(6).
  10. Hunt, E.R., et al., Remote Sensing With Simulated Unmanned Aircraft Imagery for Precision Agriculture Applications. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014. 7(11): p. 4566-4571. https://doi.org/10.1109/JSTARS.2014.2317876
  11. Yang, W., et al., Diagnosis of Plant Cold Damage Based on Hyperspectral Imaging and Convolutional Neural Network. IEEE Access, 2019. 7: p. 118239-118248. https://doi.org/10.1109/ACCESS.2019.2936892
  12. Kaneda, Y., S. Shibata, and H. Mineno, Multi-modal sliding window-based support vector regression for predicting plant water stress. Knowledge-Based Systems, 2017. 134: p. 135-148. https://doi.org/10.1016/j.knosys.2017.07.028
  13. Aliev, K., et al., Internet of plants application for smart agriculture. International Journal of Advanced Computer Science and Applications, 2018. 9(4): p. 421-429. https://doi.org/10.14569/IJACSA.2018.090458
  14. Zheng, C., et al., Automatic recognition of lactating sow postures from depth images by deep learning detector. Computers and Electronics in Agriculture, 2018. 147: p. 51-63. https://doi.org/10.1016/j.compag.2018.01.023
  15. Korhonen, L., et al., Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sensing of Environment, 2017. 195: p. 259-274. https://doi.org/10.1016/j.rse.2017.03.021
  16. Ampatzidis, Y., et al., Citrus rootstock evaluation utilizing UAV-based remote sensing and artificial intelligence. Computers and Electronics in Agriculture, 2019. 164.
  17. Haghverdi, A., R.A. Washington-Allen, and B.G. Leib, Prediction of cotton lint yield from phenology of crop indices using artificial neural networks. Computers and Electronics in Agriculture, 2018. 152: p. 186-197. https://doi.org/10.1016/j.compag.2018.07.021
  18. Veum, K.S., et al., Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization. Sensors, 2018. 18(11).
  19. Bande, S. and V.V. Shete, Smart flood disaster prediction system using IoT & Neural Networks. Proceedings of the 2017 International Conference on Smart Technologies for Smart Nation, ed. S.K. Niranjan, et al. 2017. 189-194.
  20. Dominiak, K.N., et al., Spatial modeling of pigs' drinking patterns as an alarm reducing method II. Application of a multivariate dynamic linear model. Computers and Electronics in Agriculture, 2019. 161: p. 92-103. https://doi.org/10.1016/j.compag.2018.10.037
  21. Yang, C., et al., Using High-Resolution Airborne and Satellite Imagery to Assess Crop Growth and Yield Variability for Precision Agriculture. Proceedings of the IEEE, 2013. 101(3): p. 582-592. https://doi.org/10.1109/JPROC.2012.2196249
  22. Yuzugullu, O., E. Erten, and I. Hajnsek, Rice Growth Monitoring by Means of X-Band Co-polar SAR: Feature Clustering and BBCH Scale. IEEE Geoscience and Remote Sensing Letters, 2015. 12(6): p. 1218-1222. https://doi.org/10.1109/LGRS.2015.2388953
  23. Abhishek, L. and B. Rishi Barath, Automation in agriculture using IoT and machine learning. International Journal of Innovative Technology and Exploring Engineering, 2019. 8(8): p. 1520-1524.
  24. Yang, J., et al., Botanical Internet of Things: Toward Smart Indoor Farming by Connecting People, Plant, Data and Clouds. Mobile Networks and Applications, 2018. 23(2): p. 188-202. https://doi.org/10.1007/s11036-017-0930-x
  25. Goldstein, A., et al., Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist's tacit knowledge. Precision Agriculture, 2018. 19(3): p. 421-444. https://doi.org/10.1007/s11119-017-9527-4
  26. Tseng, F., H. Cho, and H. Wu, Applying Big Data for Intelligent Agriculture-Based Crop Selection Analysis. IEEE Access, 2019. 7: p. 116965-116974. https://doi.org/10.1109/ACCESS.2019.2935564
  27. Goumopoulos, C., B. O'Flynn, and A. Kameas, Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Computers and Electronics in Agriculture, 2014. 105: p. 20-33. https://doi.org/10.1016/j.compag.2014.03.012
  28. Goap, A., et al., An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and Electronics in Agriculture, 2018. 155: p. 41-49. https://doi.org/10.1016/j.compag.2018.09.040
  29. Catini, A., Development of a Sensor Node for Remote Monitoring of Plants. Sensors (Basel), 2019. 19(22).
  30. Sun, C., Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Hortic Res, 2019. 19(10).
  31. Kodati, S. and S. Jeeva, Smart agricultural using internet of things, cloud and big data. International Journal of Innovative Technology and Exploring Engineering, 2019. 8(10): p. 3718-3722. https://doi.org/10.35940/ijitee.J9671.0881019
  32. Fenila Naomi, J., et al., A soil quality analysis and an efficient irrigation system using agro-sensors. International Journal of Engineering and Advanced Technology, 2019. 8(5): p. 703-706.
  33. Choudhary, S., et al., Autonomous crop irrigation system using artificial intelligence. International Journal of Engineering and Advanced Technology, 2019. 8(5 Special Issue): p. 46-51. https://doi.org/10.35940/ijeat.E1010.0585S19
  34. Zheng, Y.Y., et al., CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Sensors, 2019. 19(5).
  35. Ludena-Choez, J., J.J. Choquehuanca-Zevallos, and E. Mayhua-Lopez, Sensor nodes fault detection for agricultural wireless sensor networks based on NMF. Computers and Electronics in Agriculture, 2019. 161: p. 214-224. https://doi.org/10.1016/j.compag.2018.06.033
  36. Lammie, C., et al., Low-Power and High-Speed Deep FPGA Inference Engines for Weed Classification at the Edge. IEEE Access, 2019. 7: p. 51171-51184. https://doi.org/10.1109/ACCESS.2019.2911709
  37. Huang, W., et al., New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014. 7(6): p. 2516-2524. https://doi.org/10.1109/JSTARS.2013.2294961
  38. Altaheri, H., M. Alsulaiman, and G. Muhammad, Date Fruit Classification for Robotic Harvesting in a Natural Environment Using Deep Learning. IEEE Access, 2019. 7: p. 117115-117133. https://doi.org/10.1109/ACCESS.2019.2936536
  39. Pantazi, X.E., et al., Application of supervised self organising models for wheat yield prediction, in IFIP Advances in Information and Communication Technology. 2014. p. 556-565.
  40. Liu, H. and J.S. Chahl, A multispectral machine vision system for invertebrate detection on green leaves. Computers and Electronics in Agriculture, 2018. 150: p. 279-288. https://doi.org/10.1016/j.compag.2018.05.002
  41. Bose, P., et al., Spiking Neural Networks for Crop Yield Estimation Based on Spatiotemporal Analysis of Image Time Series. IEEE Transactions on Geoscience and Remote Sensing, 2016. 54(11): p. 6563-6573. https://doi.org/10.1109/TGRS.2016.2586602
  42. Fernandez, R., et al., Automatic Detection of Field-Grown Cucumbers for Robotic Harvesting. IEEE Access, 2018. 6: p. 35512-35527. https://doi.org/10.1109/ACCESS.2018.2851376
  43. Yang, Q., et al., Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Research, 2019. 235: p. 142-153. https://doi.org/10.1016/j.fcr.2019.02.022
  44. Bauer, A., et al., Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production. Horticulture Research, 2019. 6.
  45. Khan, Z., et al., Estimation of vegetation indices for high-throughput phenotyping of wheat using aerial imaging. Plant Methods, 2018. 14.
  46. Kussul, N., et al., Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 2017. 14(5): p. 778-782. https://doi.org/10.1109/LGRS.2017.2681128
  47. Sambrekar, K.P. and V.S. Rajpurohit, Fast and efficient agro data classification model for agriculture management system using hierarchical cloud computing. International Journal of Innovative Technology and Exploring Engineering, 2019. 8(4S): p. 387-394. https://doi.org/10.35940/ijitee.K1357.0981119
  48. Zhou, X., et al., Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2017. 130: p. 246-255. https://doi.org/10.1016/j.isprsjprs.2017.05.003
  49. Khan, R., et al., Technology-Assisted Decision Support System for Efficient Water Utilization: A Real-Time Testbed for Irrigation Using Wireless Sensor Networks. IEEE Access, 2018. 6: p. 25686-25697. https://doi.org/10.1109/ACCESS.2018.2836185
  50. Coopersmith, E.J., et al., Machine learning assessments of soil drying for agricultural planning. Computers and Electronics in Agriculture, 2014. 104: p. 93-104. https://doi.org/10.1016/j.compag.2014.04.004
  51. Diedrichs, A.L., et al., Prediction of Frost Events Using Machine Learning and IoT Sensing Devices. Ieee Internet of Things Journal, 2018. 5(6): p. 4589-4597. https://doi.org/10.1109/JIOT.2018.2867333
  52. Kang, M. and F. Wang, From parallel plants to smart plants: intelligent control and management for plant growth. IEEE/CAA Journal of Automatica Sinica, 2017. 4(2): p. 161-166. https://doi.org/10.1109/JAS.2017.7510487