DOI QR코드

DOI QR Code

Coronary Physiology-Based Approaches for Plaque Vulnerability: Implications for Risk Prediction and Treatment Strategies

  • Seokhun Yang (Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University of College Medicine) ;
  • Bon-Kwon Koo (Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University of College Medicine)
  • Received : 2023.05.02
  • Accepted : 2023.05.19
  • Published : 2023.09.01

Abstract

In the catheterization laboratory, the measurement of physiological indexes can help identify functionally significant lesions and has become one of the standard methods to guide treatment decision-making. Plaque vulnerability refers to a coronary plaque susceptible to rupture, enabling risk prediction before coronary events, and it can be detected by defining a certain type of plaque morphology on coronary imaging modalities. Although coronary physiology and plaque vulnerability have been considered different attributes of coronary artery disease, the underlying pathophysiological basis and clinical data indicate a strong correlation between coronary hemodynamic properties and vulnerable plaque. In prediction of coronary events, emerging data have suggested independent and additional implications of a physiology-based approach to a plaque-based approach. This review covers the fundamental interplay between coronary physiology and plaque morphology during disease progression with clinical data supporting this relationship and examines the clinical relevance of physiological indexes in prediction of clinical outcomes and therapeutic decision-making along with plaque vulnerability.

Keywords

Acknowledgement

Dr. Bon-Kwon Koo received an Institutional Research Grant from Abbott Vascular, Philips Volcano, Boston Scientific, and HeartFlow.

References

  1. Kogame N, Ono M, Kawashima H, et al. The impact of coronary physiology on contemporary clinical decision making. JACC Cardiovasc Interv 2020;13:1617-38.  https://doi.org/10.1016/j.jcin.2020.04.040
  2. Hwang D, Yang S, Zhang J, Koo BK. Physiologic assessment after coronary stent implantation. Korean Circ J 2021;51:189-201.  https://doi.org/10.4070/kcj.2020.0548
  3. Lee JM, Doh JH, Nam CW, Shin ES, Koo BK. Functional approach for coronary artery disease: filling the gap between evidence and practice. Korean Circ J 2018;48:179-90.  https://doi.org/10.4070/kcj.2017.0393
  4. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020;41:407-77. https://doi.org/10.1093/eurheartj/ehz425
  5. Tomaniak M, Katagiri Y, Modolo R, et al. Vulnerable plaques and patients: state-of-the-art. Eur Heart J 2020;41:2997-3004.  https://doi.org/10.1093/eurheartj/ehaa227
  6. Lee KY, Chang K. Understanding vulnerable plaques: current status and future directions. Korean Circ J 2019;49:1115-22.  https://doi.org/10.4070/kcj.2019.0211
  7. Yang S, Koo BK, Narula J. Interactions between morphological plaque characteristics and coronary physiology: from pathophysiological basis to clinical implications. JACC Cardiovasc Imaging 2022;15:1139-51.  https://doi.org/10.1016/j.jcmg.2021.10.009
  8. Tsao CW, Aday AW, Almarzooq ZI, et al. Heart Disease and Stroke Statistics-2022 update: a report from the American Heart Association. Circulation 2022;145:e153-639. 
  9. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657-71.  https://doi.org/10.1161/01.CIR.92.3.657
  10. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol 2014;11:379-89.  https://doi.org/10.1038/nrcardio.2014.62
  11. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47:C13-8.  https://doi.org/10.1016/j.jacc.2005.10.065
  12. Li J, Montarello NJ, Hoogendoorn A, et al. Multimodality intravascular imaging of high-risk coronary plaque. JACC Cardiovasc Imaging 2022;15:145-59.  https://doi.org/10.1016/j.jcmg.2021.03.028
  13. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364:226-35.  https://doi.org/10.1056/NEJMoa1002358
  14. Erlinge D, Maehara A, Ben-Yehuda O, et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): a prospective natural history study. Lancet 2021;397:985-95.  https://doi.org/10.1016/S0140-6736(21)00249-X
  15. Prati F, Romagnoli E, Gatto L, et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: the CLIMA study. Eur Heart J 2020;41:383-91.  https://doi.org/10.1093/eurheartj/ehz520
  16. Chang HJ, Lin FY, Lee SE, et al. Coronary Atherosclerotic Precursors of Acute Coronary Syndromes. J Am Coll Cardiol 2018;71:2511-22.  https://doi.org/10.1016/j.jacc.2018.02.079
  17. Tian J, Dauerman H, Toma C, et al. Prevalence and characteristics of TCFA and degree of coronary artery stenosis: an OCT, IVUS, and angiographic study. J Am Coll Cardiol 2014;64:672-80.  https://doi.org/10.1016/j.jacc.2014.05.052
  18. Araki M, Soeda T, Kim HO, et al. Spatial distribution of vulnerable plaques: comprehensive in vivo coronary plaque mapping. JACC Cardiovasc Imaging 2020;13:1989-99.  https://doi.org/10.1016/j.jcmg.2020.01.013
  19. Cheng JM, Garcia-Garcia HM, de Boer SP, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J 2014;35:639-47.  https://doi.org/10.1093/eurheartj/eht484
  20. Schuurman AS, Vroegindewey MM, Kardys I, et al. Prognostic value of intravascular ultrasound in patients with coronary artery disease. J Am Coll Cardiol 2018;72:2003-11.  https://doi.org/10.1016/j.jacc.2018.08.2140
  21. Kaul S, Narula J. In search of the vulnerable plaque: is there any light at the end of the catheter? J Am Coll Cardiol 2014;64:2519-24.  https://doi.org/10.1016/j.jacc.2014.10.017
  22. Gijsen F, Katagiri Y, Barlis P, et al. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2019;40:3421-33.  https://doi.org/10.1093/eurheartj/ehz551
  23. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035-42.
  24. Yahagi K, Kolodgie FD, Otsuka F, et al. Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol 2016;13:79-98.  https://doi.org/10.1038/nrcardio.2015.164
  25. Fukumoto Y, Hiro T, Fujii T, et al. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J Am Coll Cardiol 2008;51:645-50.  https://doi.org/10.1016/j.jacc.2007.10.030
  26. Gijsen FJ, Wentzel JJ, Thury A, et al. Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Heart Circ Physiol 2008;295:H1608-14.  https://doi.org/10.1152/ajpheart.01081.2007
  27. Samady H, Eshtehardi P, McDaniel MC, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 2011;124:779-88.  https://doi.org/10.1161/CIRCULATIONAHA.111.021824
  28. Kolpakov V, Gordon D, Kulik TJ. Nitric oxide-generating compounds inhibit total protein and collagen synthesis in cultured vascular smooth muscle cells. Circ Res 1995;76:305-9.  https://doi.org/10.1161/01.RES.76.2.305
  29. Casey PJ, Dattilo JB, Dai G, et al. The effect of combined arterial hemodynamics on saphenous venous endothelial nitric oxide production. J Vasc Surg 2001;33:1199-205.  https://doi.org/10.1067/mva.2001.115571
  30. Kenagy RD, Fischer JW, Davies MG, et al. Increased plasmin and serine proteinase activity during flow-induced intimal atrophy in baboon PTFE grafts. Arterioscler Thromb Vasc Biol 2002;22:400-4.  https://doi.org/10.1161/hq0302.105376
  31. Bark DL Jr, Ku DN. Wall shear over high degree stenoses pertinent to atherothrombosis. J Biomech 2010;43:2970-7.  https://doi.org/10.1016/j.jbiomech.2010.07.011
  32. Choi G, Lee JM, Kim HJ, et al. Coronary artery axial plaque stress and its relationship with lesion geometry: application of computational fluid dynamics to coronary CT angiography. JACC Cardiovasc Imaging 2015;8:1156-66.  https://doi.org/10.1016/j.jcmg.2015.04.024
  33. Tanaka A, Imanishi T, Kitabata H, et al. Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation 2008;118:2368-73.  https://doi.org/10.1161/CIRCULATIONAHA.108.782540
  34. Stone PH, Coskun AU, Kinlay S, et al. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 2003;108:438-44.  https://doi.org/10.1161/01.CIR.0000080882.35274.AD
  35. Stone PH, Saito S, Takahashi S, et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 2012;126:172-81.  https://doi.org/10.1161/CIRCULATIONAHA.112.096438
  36. Corban MT, Eshtehardi P, Suo J, et al. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability. Atherosclerosis 2014;232:271-6.  https://doi.org/10.1016/j.atherosclerosis.2013.11.049
  37. Stone PH, Maehara A, Coskun AU, et al. Role of low endothelial shear stress and plaque characteristics in the prediction of nonculprit major adverse cardiac events: the PROSPECT study. JACC Cardiovasc Imaging 2018;11:462-71.  https://doi.org/10.1016/j.jcmg.2017.01.031
  38. Bajraktari A, Bytyci I, Henein MY. High coronary wall shear stress worsens plaque vulnerability: a systematic review and meta-analysis. Angiology 2021;72:706-14.  https://doi.org/10.1177/0003319721991722
  39. Hartman EMJ, De Nisco G, Kok AM, et al. Wall shear stress-related plaque growth of lipid-rich plaques in human coronary arteries: an near-infrared spectroscopy and optical coherence tomography study. Cardiovasc Res 2023;119:1021-9. https://doi.org/10.1093/cvr/cvac178
  40. Varshney AS, Coskun AU, Siasos G, et al. Spatial relationships among hemodynamic, anatomic, and biochemical plaque characteristics in patients with coronary artery disease. Atherosclerosis 2021;320:98-104. https://doi.org/10.1016/j.atherosclerosis.2020.12.018
  41. Kelsey LJ, Bellinge JW, Majeed K, et al. Low endothelial shear stress is associated with high-risk coronary plaque features and microcalcification activity. JACC Cardiovasc Imaging 2021;14:2262-4.  https://doi.org/10.1016/j.jcmg.2021.06.016
  42. Okamoto N, Vengrenyuk Y, Fuster V, et al. Relationship between high shear stress and OCT-verified thin-cap fibroatheroma in patients with coronary artery disease. PLoS One 2020;15:e0244015. 
  43. Hetterich H, Jaber A, Gehring M, et al. Coronary computed tomography angiography based assessment of endothelial shear stress and its association with atherosclerotic plaque distribution in-vivo. PLoS One 2015;10:e0115408. 
  44. Park JB, Choi G, Chun EJ, et al. Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics. Heart 2016;102:1655-61.  https://doi.org/10.1136/heartjnl-2016-309299
  45. Kay FU, Canan A, Abbara S. Future directions in coronary CT angiography: CT-fractional flow reserve, plaque vulnerability, and quantitative plaque assessment. Korean Circ J 2020;50:185-202.  https://doi.org/10.4070/kcj.2019.0315
  46. Dwivedi A, Al'Aref SJ, Lin FY, Min JK. Evaluation of atherosclerotic plaque in non-invasive coronary imaging. Korean Circ J 2018;48:124-33.  https://doi.org/10.4070/kcj.2017.0392
  47. Usui E, Yonetsu T, Kanaji Y, et al. Optical coherence tomography-defined plaque vulnerability in relation to functional stenosis severity and microvascular dysfunction. JACC Cardiovasc Interv 2018;11:2058-68.  https://doi.org/10.1016/j.jcin.2018.07.012
  48. Hoshino M, Usui E, Sugiyama T, Kanaji Y, Yonetsu T, Kakuta T. Prevalence of OCT-defined high-risk plaque in relation to physiological characteristics by fractional flow reserve and coronary flow reserve. Rev Esp Cardiol (Engl Ed) 2020;73:331-2.  https://doi.org/10.1016/j.recesp.2019.08.016
  49. Zuo W, Sun R, Zhang X, et al. The association between quantitative flow ratio and intravascular imaging-defined vulnerable plaque characteristics in patients with stable angina and non-ST-segment elevation acute coronary syndrome. Front Cardiovasc Med 2021;8:690262. 
  50. Yang S, Hoshino M, Koo BK, et al. Relationship of plaque features at coronary CT to coronary hemodynamics and cardiovascular events. Radiology 2022;305:578-87.  https://doi.org/10.1148/radiol.213271
  51. Driessen RS, Stuijfzand WJ, Raijmakers PG, et al. Effect of plaque burden and morphology on myocardial blood flow and fractional flow reserve. J Am Coll Cardiol 2018;71:499-509.  https://doi.org/10.1016/j.jacc.2017.11.054
  52. Yang S, Koo BK, Hoshino M, et al. CT angiographic and plaque predictors of functionally significant coronary disease and outcome using machine learning. JACC Cardiovasc Imaging 2021;14:629-41.  https://doi.org/10.1016/j.jcmg.2020.08.025
  53. Yang S, Choi G, Zhang J, et al. Association among local hemodynamic parameters derived from CT angiography and their comparable implications in development of acute coronary syndrome. Front Cardiovasc Med 2021;8:713835. 
  54. Kalykakis GE, Antonopoulos AS, Pitsargiotis T, et al. Relationship of endothelial shear stress with plaque features with coronary CT angiography and vasodilating capability with PET. Radiology 2021;300:549-56.  https://doi.org/10.1148/radiol.2021204381
  55. Wong CC, Javadzadegan A, Ada C, et al. Fractional flow reserve and instantaneous wave-free ratio predict pathological wall shear stress in coronary arteries: implications for understanding the pathophysiological impact of functionally significant coronary stenoses. J Am Heart Assoc 2022;11:e023502. 
  56. Yang S, Koo BK. Physiology versus imaging-guided revascularization: where are we in 2023? JACC Asia. 2023 [Epub ahead of print]. 
  57. Lee JM, Choi G, Koo BK, et al. Identification of high-risk plaques destined to cause acute coronary syndrome using coronary computed tomographic angiography and computational fluid dynamics. JACC Cardiovasc Imaging 2019;12:1032-43.  https://doi.org/10.1016/j.jcmg.2018.01.023
  58. Fukuyama Y, Otake H, Seike F, et al. Potential relationship between high wall shear stress and plaque rupture causing acute coronary syndrome. Heart Vessels 2023;38:634-44. https://doi.org/10.1007/s00380-022-02224-7
  59. Thondapu V, Mamon C, Poon EK, et al. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovasc Res 2021;117:1974-85.  https://doi.org/10.1093/cvr/cvaa251
  60. Costopoulos C, Huang Y, Brown AJ, et al. Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging 2017;10:1472-83.  https://doi.org/10.1016/j.jcmg.2017.04.017
  61. Bourantas CV, Zanchin T, Torii R, et al. Shear stress estimated by quantitative coronary angiography predicts plaques prone to progress and cause events. JACC Cardiovasc Imaging 2020;13:2206-19.  https://doi.org/10.1016/j.jcmg.2020.02.028
  62. Candreva A, Pagnoni M, Rizzini ML, et al. Risk of myocardial infarction based on endothelial shear stress analysis using coronary angiography. Atherosclerosis 2022;342:28-35.  https://doi.org/10.1016/j.atherosclerosis.2021.11.010
  63. Kumar A, Thompson EW, Lefieux A, et al. High coronary shear stress in patients with coronary artery disease predicts myocardial infarction. J Am Coll Cardiol 2018;72:1926-35.  https://doi.org/10.1016/j.jacc.2018.07.075
  64. van de Hoef TP, Lee JM, Boerhout CK, et al. Combined assessment of FFR and CFR for decision making in coronary revascularization: from the multicenter international ILIAS registry. JACC Cardiovasc Interv 2022;15:1047-56.  https://doi.org/10.1016/j.jcin.2022.03.016
  65. Zimmermann FM, Omerovic E, Fournier S, et al. Fractional flow reserve-guided percutaneous coronary intervention vs. medical therapy for patients with stable coronary lesions: meta-analysis of individual patient data. Eur Heart J 2019;40:180-6.  https://doi.org/10.1093/eurheartj/ehy812
  66. Koo BK, Hu X, Kang J, et al. Fractional flow reserve or intravascular ultrasonography to guide PCI. N Engl J Med 2022;387:779-89.  https://doi.org/10.1056/NEJMoa2201546
  67. Iannaccone M, Abdirashid M, Annone U, et al. Comparison between functional and intravascular imaging approaches guiding percutaneous coronary intervention: a network meta-analysis of randomized and propensity matching studies. Catheter Cardiovasc Interv 2020;95:1259-66.  https://doi.org/10.1002/ccd.28410
  68. Kedhi E, Berta B, Roleder T, et al. Thin-cap fibroatheroma predicts clinical events in diabetic patients with normal fractional flow reserve: the COMBINE OCT-FFR trial. Eur Heart J 2021;42:4671-9.  https://doi.org/10.1093/eurheartj/ehab433
  69. Fabris E, Berta B, Hommels T, et al. Long-term outcomes of patients with normal fractional flow reserve and thin-cap fibroatheroma. EuroIntervention 2023;18:e1099-107.  https://doi.org/10.4244/EIJ-D-22-00306
  70. Lee JM, Choi KH, Koo BK, et al. Prognostic implications of plaque characteristics and stenosis severity in patients with coronary artery disease. J Am Coll Cardiol 2019;73:2413-24.  https://doi.org/10.1016/j.jacc.2019.02.060
  71. Cho YK, Hwang J, Lee CH, et al. Influence of anatomical and clinical characteristics on long-term prognosis of FFR-guided deferred coronary lesions. JACC Cardiovasc Interv 2020;13:1907-16.  https://doi.org/10.1016/j.jcin.2020.05.040
  72. Park J, Lee JM, Koo BK, et al. Relevance of anatomical, plaque, and hemodynamic characteristics of nonobstructive coronary lesions in the prediction of risk for acute coronary syndrome. Eur Radiol 2019;29:6119-28.  https://doi.org/10.1007/s00330-019-06221-9
  73. Yang S, Koo BK, Hwang D, et al. High-risk morphological and physiological coronary disease attributes as outcome markers after medical treatment and revascularization. JACC Cardiovasc Imaging 2021;14:1977-89.  https://doi.org/10.1016/j.jcmg.2021.04.004
  74. Yang S, Lesina K, Doh JH, et al. Long-term prognostic implications of hemodynamic and plaque assessment using coronary CT angiography. Atherosclerosis 2023;373:58-65.  https://doi.org/10.1016/j.atherosclerosis.2023.02.005
  75. Collet C, Sonck J, Vandeloo B, et al. Measurement of hyperemic pullback pressure gradients to characterize patterns of coronary atherosclerosis. J Am Coll Cardiol 2019;74:1772-84.  https://doi.org/10.1016/j.jacc.2019.07.072
  76. Mizukami T, Sonck J, Sakai K, et al. Procedural outcomes after percutaneous coronary interventions in focal and diffuse coronary artery disease. J Am Heart Assoc 2022;11:e026960. 
  77. Hong H, Li C, Gutierrez-Chico JL, et al. Radial wall strain: a novel angiographic measure of plaque composition and vulnerability. EuroIntervention 2022;18:1001-10. https://doi.org/10.4244/EIJ-D-22-00537
  78. Wang ZQ, Xu B, Li CM, et al. Angiography-derived radial wall strain predicts coronary lesion progression in non-culprit intermediate stenosis. J Geriatr Cardiol 2022;19:937-48. 
  79. Tu S, Xu B, Chen L, et al. Short-term risk stratification of non-flow-limiting coronary stenosis by angiographically derived radial wall strain. J Am Coll Cardiol 2023;81:756-67. https://doi.org/10.1016/j.jacc.2022.11.056