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AUTHOR'S SUMMARY

While coronary physiology and plaque vulnerability have been considered distinct attributes 
of coronary artery disease, evaluated from different diagnostic modalities, clinical data and 
underlying pathophysiology have demonstrated that there is a strong connection between 
hemodynamic properties and vulnerable plaque. This link suggests that using invasive 
physiological indexes to identify functional significance may also be somewhat useful in 
detecting plaque vulnerability. Furthermore, emerging data have suggested the independent 
and synergistic prognostic value between a physiology-based approach and a plaque-based 
approach, and understanding the prognostic relevance between the two can optimize risk 
prediction and treatment decision-making.

ABSTRACT

In the catheterization laboratory, the measurement of physiological indexes can help identify 
functionally significant lesions and has become one of the standard methods to guide 
treatment decision-making. Plaque vulnerability refers to a coronary plaque susceptible 
to rupture, enabling risk prediction before coronary events, and it can be detected by 
defining a certain type of plaque morphology on coronary imaging modalities. Although 
coronary physiology and plaque vulnerability have been considered different attributes of 
coronary artery disease, the underlying pathophysiological basis and clinical data indicate 
a strong correlation between coronary hemodynamic properties and vulnerable plaque. In 
prediction of coronary events, emerging data have suggested independent and additional 
implications of a physiology-based approach to a plaque-based approach. This review 
covers the fundamental interplay between coronary physiology and plaque morphology 
during disease progression with clinical data supporting this relationship and examines the 
clinical relevance of physiological indexes in prediction of clinical outcomes and therapeutic 
decision-making along with plaque vulnerability.
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INTRODUCTION

The physiological assessment of coronary artery disease (CAD) in the catheterization 
laboratory, including fractional flow reserve (FFR) or non-hyperemic pressure ratio (NHPR) 
measurement, can identify functionally significant lesions that cannot be reliably detected by 
invasive coronary angiography alone.1-3) Currently, a physiology-based approach has become 
one of the standard methods for revascularization decision-making.4) In the meantime, 
imaging modalities have been used to identify vulnerable plaque susceptible to rupture, 
thus enabling risk prediction before coronary events.5)6) Although functional significance 
and morphological plaque characteristics have traditionally been regarded as distinct 
characteristics of CAD, the pathophysiological basis and emerging clinical data have shown a 
close association between coronary hemodynamics and plaque vulnerability.7) Therefore, it is 
essential to understand the clinical value and pathophysiological basis of coronary physiology 
in relation to plaque vulnerability and the functional significance of coronary lesions. In this 
review, we aimed to explore the fundamental interplay between coronary hemodynamics 
and plaque morphology during disease progression, provide supporting clinical data for 
their relationship, and examine the independent and additive prognostic implications of a 
physiology-based approach along with plaque vulnerability.

PATHOPHYSIOLOGICAL BASIS FOR CORONARY 
HEMODYNAMIC PROPERTIES AND PLAQUE 
VULNERABILITY INTERACTION

Defining plaque vulnerability
Acute coronary syndrome is a leading cause of death worldwide,8) with over two-thirds 
of cases attributable to plaque rupture, in which a plaque ruptures suddenly and leads to 
the formation of a thrombus and myocardial infarction.9)10) Plaque vulnerability typically 
refers to a specific type of plaque associated with a high risk of acute coronary events. 
Thin cap fibroatheroma (TCFA), defined as a thin fibrous cap (<65 μm) with a large lipid 
pool or necrotic core, has been identified as a vulnerable plaque based on postmortem 
histopathological studies.11) Microcalcifications, inflammatory infiltrates, such as activated 
macrophages, cholesterol crystals, and intraplaque hemorrhage, are additional precursors 
of ruptured plaque.12) Various invasive and non-invasive coronary imaging modalities, 
including optical coherence tomography (OCT), intravascular ultrasound (IVUS), coronary 
computed tomography (CT) angiography (CCTA), or near-infrared spectroscopy (NIRS), can 
identify high-risk plaque features as surrogate markers for vulnerable plaque and clinical 
outcomes.12-16) Additionally, plaque quantity has been proposed as a determinant of the 
prevalence and prognostic significance of vulnerable plaque. The prevalence of OCT-derived 
TCFA correlates with anatomical severity in three-vessel OCT studies.17)18) The relationship 
between high-risk plaque characteristics and adverse cardiovascular events depended on the 
presence of a large amount of plaque in several studies,14)19)20) implying that plaque quality and 
quantity should be considered in defining vulnerable plaque. Moreover, plaque morphology 
observed at a single time point cannot fully determine the fate of plaque.21) The progression 
from atherosclerosis to vulnerable plaque and subsequent coronary events is a dynamic 
process involving continuous interaction of a plaque with the surrounding coronary anatomy 
and environment, particularly with hemodynamic properties.7)
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Role of hemodynamic properties in vulnerable plaque development
Wall shear stress, the normalized tangential force exerted on the vessel wall, regulates 
the pro-inflammatory pathway perceived by endothelial cells.22) At specific sites within 
the arterial system exposed to low wall shear stress, atherosclerosis can be initiated by 
increased inflammatory activity involving the interaction of circulating inflammatory cells 
and adhesion molecules expressed on the activated endothelial cells.23) This results in the 
transdifferentiation of monocytes into foams cells and the formation of the fatty streak, 
which initiates atherosclerotic plaque formation.24) As the plaque grows and luminal 
narrowing progresses, shear stress increases in the upstream segment of a lesion, and high 
wall shear stress can promote plaque vulnerability.25-27) High wall shear stress can inhibit 
smooth muscle cell proliferation and induce apoptosis, resulting in the thinning of the 
fibrous cap and a reduction in total fibrous tissue.28)29) Furthermore, high wall shear stress 
is associated with vascular inflammation, larger necrotic core, and platelet activation, 
adhesion, and aggregation, which can increase the risk of rupture.30)31) Ultimately, at the stage 
of coronary events, excessive mechanical strain can weaken the fibrous cap and cause plaque 
rupture,26)32)33) thereby increasing the probability of fatal coronary events associated with 
vulnerable plaque.7) Therefore, hemodynamic properties should be regarded as an essential 
component of coronary events and a surrogate marker for plaque vulnerability throughout 
the natural progression of atherogenesis to clinical events (Figure 1).
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Cross sectional evaluation
Physiology Imaging

FFR/NHPR ↔
ΔFFR/NHRP ↔

Shear stress ↓

  Low shear stress initiates
Atherosclerosis

Plaque growth
Alters hemodynamics

Increased shear
Stress enhances

Plaque vulnerability

Vulnerable plaque 
Impairs shear stress and 

mechanical strain

Mechanical trigger

Plaque structure
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for rupture

Plaque burden ↔
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No lipid-rich plaque

Cross sectional evaluation
Physiology Imaging

FFR/NHPR ↓
ΔFFR/NHRP ↑
Shear stress ↑

Plaque burden ↑
TCFA ↑ 
Lipid-rich plaque ↑

Cross sectional evaluation

Initiation of plaque Vulnerable plaque

Progression from
atherosclerosis to events

Coronary events

Physiology Imaging

FFR/NHPR ↓↓
ΔFFR/NHRP ↑↑
Shear stress ↑↑

Plaque burden ↑↑
TCFA ↑↑ 
Lipid-rich plaque ↑↑

Figure 1. Coronary events developed by the pathophysiological interplay between coronary hemodynamic properties and plaque morphology. 
Throughout the atherosclerosis progress, coronary hemodynamic properties and plaque morphology continually interact with each other at every step, 
ultimately leading to subsequent coronary events. At each step, hemodynamic and plaque aspects of coronary lesions can be correlated, which explains the 
association between physiological indexes and plaque vulnerability on cross-sectional evaluation. 
FFR = fractional flow reserve; NHPR = non-hyperemic pressure ratio; TCFA = thin cap fibroatheroma.



CLINICAL EVIDENCE FOR ASSOCIATION BETWEEN 
PHYSIOLOGICAL CHARACTERISTICS AND PLAQUE 
VULNERABILITY

In vivo association between coronary hemodynamics and vulnerable plaque
In vivo studies have demonstrated the relationship between coronary hemodynamics 
and plaque vulnerability. An initial prospective study using a combination of IVUS and 
coronary angiography in human coronary arteries reported that non-obstructive lesions 
with low wall shear stress were associated with increased plaque thickness and outward 
remodeling.34) This finding was confirmed by the Prediction of Progression of Coronary 
Artery Disease and Clinical Outcome Using Vascular Profiling of Shear Stress and Wall 
Morphology (PREDICTION) study, which reported that larger plaque burden and low wall 
shear stress were independent predictors of plaque progression and luminal narrowing 
requiring coronary revascularization.35) Another prospective IVUS study further validated 
the association between low wall shear stress and plaque progression and constrictive 
remodeling. However, high wall shear stress was related to greater necrotic core progression 
and expansive remodeling, resulting in a more vulnerable plaque phenotype.27) Furthermore, 
low and high wall shear stress had a greater predictive value than plaque burden for plaque 
progression or plaque phenotype,36)37) demonstrating the significant effect of hemodynamics 
on plaque formation and destabilization.38) Wall shear stress was consistently associated 
with high-risk plaque features on other imaging modalities. Lipid-rich plaque identified by 
NIRS and OCT, which are exposed to low wall shear stress, were associated with accelerated 
plaque growth.39)40) Low shear stress can predict active microcalcifications detected by 
18F-NaF positron emission tomography.41) In obstructive lesions, high wall shear stress 
in the proximal segments was an independent predictor of the presence of OCT-derived 
TCFA.42) This relationship of low and high wall shear stress with adverse plaque was similarly 
demonstrated using CCTA-derived adverse plaque characteristics, including low-attenuation 
plaque positive remodeling, spotty calcification, or napkin-ring sign.43-46)

Complex association between physiological indexes and plaque quality and 
quantity
In addition to substantial clinical evidence for the link between hemodynamic properties 
surrounding a coronary lesion and its vulnerability, several studies investigated the 
association of physiological indexes that can be measured in the catheterization laboratory 
with plaque vulnerability (Table 1),47-49) demonstrating the prevalence of OCT-derived 
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Table 1. Association of physiological indexes with plaque vulnerability
Study Publication year Number of lesions (patients) Prevalence of OCT-derived TCFAs, n (%) p value
Usui et al.47) 2018 382 (340) FFR >0.79 15 (11.7) 0.02

FFR 0.72–0.79 14 (10.8)
FFR <0.72 27 (21.8)

Hoshino  
et al.48)

2020 473 (419) FFR >0.80 & CFR >2.0 8 (7.8) <0.01
FFR >0.80 & CFR ≤2.0 6 (23.1)
FFR ≤0.80 & CFR >2.0 14 (8.2)
FFR ≤0.80 & CFR ≤2.0 38 (22.0)

Zuo et al.49) 2021 132 (126) QFR >0.93 5 (19.2) <0.01
QFR 0.85–0.93 4 (13.8)

QFR ≤0.85 14 (50.0)
CFR = coronary flow reserve; FFR = fractional flow reserve; OCT = optical coherence tomography; QFR = quantitative 
flow ratio; TCFA = thin cap fibroatheroma.



TCFA was higher in lesions with low coronary pressure or flow indexes. A recent study 
expanded the association between various physiological indexes and the CCTA-derived 
plaque quantity and quality.50) High disease burden, characterized by a large plaque burden 
and small minimum lumen area (MLA), was predicted by resting and hyperemic pressure, 
and coronary flow reserve. However, resting and hyperemic pressure and microvascular 
resistance were associated with adverse plaque, defined by low attenuation plaque, and 
positive remodeling.50) When the association of plaque characteristics with physiological 
indexes was investigated, impaired myocardial blood flow on [15O]H2O positron emission 
tomography and FFR were predicted by partially calcified plaques, low attenuation plaque, 
and positive remodeling, with a value that was incremental over stenosis severity.51) Moreover, 
in the prediction of FFR ≤0.80, the best plaque metrics interrogated by the machine learning 
algorithm were MLA, percent atheroma volume, fibrofatty and necrotic core volume, plaque 
volume, proximal left anterior descending coronary artery lesion, and remodeling index, 
indicating a complex interaction between luminal stenosis, plaque quantity, and quality, and 
functional significance.52) How physiological indexes representing a functional status are 
associated with plaque vulnerability can be appreciated by the correlation of translesional 
pressure drop with local hemodynamic parameters32)53) and the independent relationship 
between per-vessel coronary pressure and flow with local shear stress.54)55) Therefore, the use 
of invasive physiological indexes to define functional significance can also be associated to 
the identification of plaque vulnerability to some extent.56)

INDEPENDENT PROGNOSTIC IMPLICATIONS OF 
CORONARY HEMODYNAMICS ON CORONARY EVENTS
Independent role of coronary hemodynamics on coronary events
Given the pathophysiological basis and clinical evidence between coronary physiology and 
plaque vulnerability, the next question would be whether the hemodynamic assessment is 
a surrogate marker for plaque vulnerability or an independent predictor for future coronary 
events. In the Exploring the MEchanism of Plaque Rupture in Acute Coronary Syndrome 
Using Coronary CT Angiography and computationaL Fluid Dynamic (EMERALD) study that 
compared CCTA-derived plaque and hemodynamic characteristics between non-culprit and 
culprit lesions in patients with acute coronary syndrome (ACS),57) the likelihood of culprit 
lesions significantly increased with the increasing number of adverse plaque characteristics 
and adverse hemodynamic characteristics (i.e., FFRCT ≤0.80, ΔFFRCT ≥0.06, wall shear 
stress ≥154.7 dyn/cm2, and axial plaque stress ≥1,606.6 dyn/cm2) (Figure 2). Using the 
number of adverse plaque characteristics as a mediator in a mediation analysis revealed that 
adverse hemodynamic characteristics had direct and indirect effects on ACS culprit lesions 
(Figure 2). These findings indicate that hemodynamic properties may have an independent 
prognostic impact and a mediating impact through plaque vulnerability on plaque rupture 
events. Moreover, this notion is supported by previous studies demonstrating a correlation 
between the shear stress concentration and the plaque rupture site.25)58) High wall shear 
stress is independently associated with plaque rupture and erosion in patients with ACS.59) 
Increased plaque structural stress is also associated with a higher risk of ruptured plaque,60) 
and high wall shear stress derived from three-dimensional quantitative coronary angiography 
predicted plaque progression61) and impending myocardial infarction (MI).62)63) Therefore, the 
current evidence suggests that hemodynamic properties can serve as independent prognostic 
factors for coronary events as well as indicators for vulnerable plaque.

585

Coronary Physiology and Vulnerable Plaque

https://doi.org/10.4070/kcj.2023.0117https://e-kcj.org



Outcome comparison between physiology- and plaque-based approach
The relationship between coronary hemodynamics with coronary events was similarly 
supported by the clinical data evaluating the relationship between physiological indexes and 
outcomes. In the international pooled registry with patients who underwent invasive flow 
and pressure measurement, the 5-year incidence of cardiac death or target vessel MI was 
higher in patients with low coronary flow reserve or low FFR.64) When treatment decision-
making was guided by physiological indexes, revascularized low FFR lesions showed a lower 
risk of cardiac death or MI than medically treated low FFR lesions in an individual patient-
level meta-analysis,65) indicating the efficacy of physiological indexes-based revascularization 
in treating patient’s vulnerability. In this context that both physiology and plaque assessment 
may be used to identify and treat the patient’s vulnerability, a recent randomized controlled 
study tested the non-inferiority of FFR-guided treatment strategy (revascularization if 
FFR ≤0.80) to the IVUS-guided treatment strategy (revascularization if MLA <3 mm2 or 3 
mm2< MLA ≤4 mm2 with plaque burden ≥70%) in patients with intermediate stenosis and 
demonstrated comparable 2-year outcomes of all-cause death, MI, and revascularization.66) A 
previous network meta-analysis evaluated the similarity in outcomes following physiology- 
and imaging-guided treatment, which strongly supports the independent prognostic impact 
of each modality on clinical outcomes.67) Ongoing studies will shed more light on the direct 
comparability of physiology-guided and plaque vulnerability-guided treatment.
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Figure 2. Prognostic value of coronary hemodynamic properties in relation to plaque characteristics. 
In the EMERALD study that included 216 lesions from 72 patients with ACS, lesion characteristics were compared between 66 culprit and 150 non-culprit lesions 
on CCTA taken before ACS events. (A) The correlation of the number of adverse plaque characteristics (i.e., low-attenuation plaque, positive remodeling, spotty 
calcification, and napkin-ring sign) and adverse hemodynamic characteristics (i.e., FFRCT ≤0.80, ΔFFRCT ≥0.06, WSS ≥154.7 dyn/cm2, and axial plaque stress 
≥1,606.6 dyn/cm2) with the proportion of culprit lesions is shown. (B) The mediation analysis investigated the direct and indirect impact of adverse hemodynamic 
characteristics on ACS culprit lesions mediated by adverse plaque characteristics. 
ACS = acute coronary syndrome; CCTA = coronary computed tomography angiography; CT = computed tomography; EMERALD = Exploring the MEchanism of 
Plaque Rupture in Acute Coronary Syndrome Using Coronary CT Angiography and computationaL Fluid Dynamic; FFRCT = CCTA-derived fractional flow reserve; 
WSS = wall shear stress. 
*The number of adverse plaque or hemodynamic characteristics is shown.



INTEGRATIVE PHYSIOLOGY AND PLAQUE ASSESSMENT 
AND FUTURE DIRECTIONS
Additive prognostic value of combined physiological and plaque assessment
Since physiological assessment offers prognostic implications independent of plaque 
vulnerability, obtaining hemodynamic properties and plaque morphology may provide the 
most comprehensive prognostic data. Several studies have shown the efficacy of integrative 
physiology and plaque assessment in predicting clinical outcomes. In lesions with FFR >0.80, 
which can be safely deferred from revascularization according to the current guideline,4) 
OCT-derived TCFA was present in approximately 25% of lesions and was associated with 
an increased risk of a composite of cardiac death, target vessel MI, clinically driven target 
lesion revascularization or hospitalization due to unstable angina until 5-years among 
patients with diabetes.68)69) This finding was consistent in that IVUS, or CCTA-based 
adverse plaque features were also independent prognostic indicators in deferred lesions 
with FFR >0.80.52)70)71) Similarly, in lesions without high-risk plaque, adverse hemodynamic 
characteristics can distinguish culprit lesions from non-culprit lesions of ACS events,53) 
indicating that physiological indexes and plaque features can complement each other to 
define high-risk lesions that a single modality cannot capture. Furthermore, several studies 
reported that abnormal physiological indexes and adverse plaque features could predict 
future clinical events synergistically. The likelihood of ACS culprit lesions was higher in 
lesions with both adverse plaque and hemodynamic characteristics than in those with 
none.57)72) The risk of vessel-specific composite outcomes was increased proportionally with 
FFR ≤0.80, high local and global burden, and adverse plaque.73) In a recent report from the 
first-in-human study of CCTA-derived FFR, the predictability for per-lesion and vessel 10-year 
outcomes was highest when plaque and hemodynamic predictors were added to baseline 
clinical and lesion characteristics, suggesting that physiological and plaque components may 
contribute synergistically even very long-term coronary events.74)

Future perspectives of hemodynamic approach for plaque vulnerability and 
clinical outcomes
Since standard physiological indexes, including FFR or NHPR, are per-vessel indicators 
of functional significance, they are limited for assessing the lesion-specific risk for 
future coronary events.7)21) Recently, novel hemodynamic indexes that can be used in the 
catheterization laboratory for better lesion-level evaluation, including plaque vulnerability, 
increased predictability for outcomes, and optimized guiding for appropriate treatment 
decision-making, have been introduced (Table 2). ΔFFR is a simplified index defined as the 
difference between the proximal and distal FFR. Several studies have demonstrated that 
ΔFFR may have additive predictive values for plaque vulnerability and clinical outcomes to 
FFR.53)57)74) The strength of ΔFFR is its simplicity in that ΔFFR can be obtained using well-
defined FFR pullback estimation without additional analysis tools. The prognostic value of 
ΔFFR or ΔNHPR will be demonstrated further in ongoing studies, such as the Prognostic 
Impact of Lesion-specific Hemodynamic Index in Patients With Coronary Artery Disease 
(PRIME-FFR) study (NCT05250557) and the Distal Evaluation of Functional Performance 
With Intravascular Sensors to Assess the Narrowing Effect: Guided Physiologic Stenting 
(DEFINE GPS) study (NCT04451044). Pressure pullback gradient (PPG), calculated by the 
combined maximal pressure gradient and the functional lesion length, can characterize 
a physiological pattern of a vessel as physiological focal or diffuse CAD.75) Given that 
percutaneous coronary intervention (PCI) is a local treatment that relieves the pressure 
gradient of a lesion, the derivation of PPG, in addition to FFR, is expected to define further 
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suitable PCI candidates that benefit from revascularization.76) Radial wall strain is a new 
index representing lesion-specific biomechanical properties and vessel wall distortion during 
the heartbeat cycle. Recent studies have shown that high maximal radial wall strain along the 
lesion segment was associated with a higher prevalence of vulnerable plaque and an increased 
risk of lesion progression and clinical events in non-ischemic lesions.77-79) With these evolving 
physiological approaches for plaque vulnerability and clinical outcomes, physicians will be in 
a better position to make decisions and administer treatment to patients with CAD.

CONCLUSION

Plaque vulnerability and subsequent acute coronary events are determined by the continuous 
interaction between plaque morphology and the hemodynamic properties of the surrounding 
plaque, which is the basis for the correlation of abnormal physiological indexes with 
the presence of vulnerable plaque. A coronary physiology-based approach provides an 
independent and additional prognostic value to a plaque-based approach. Using integrative 
physiology and plaque assessment, along with emerging physiological indexes, will allow for 
improved risk assessment and treatment decision-making in the management of CAD.
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