DOI QR코드

DOI QR Code

Analysis of elastic wave propagation in long beam using Fourier transformation

  • Received : 2022.08.28
  • Accepted : 2023.06.04
  • Published : 2023.07.25

Abstract

This paper presents a novel method for modeling elastic wave propagation in long beams. The proposed method derives a solution for the transient transverse displacement of the beam's neutral axis without assuming the separation of variables (SV). By mapping the governing equation from the space domain to the frequency domain using Fourier transformation (FT), the transverse displacement function is determined as a convolution integral of external loading functions and a combination of trigonometric and Fresnel functions. This method determines the beam's response to general loading conditions as a linear combination of the analytical response of a beam subjected to an abrupt localized loading. The proposed solution method is verified through finite element analysis (FEA) and wave propagation patterns are derived for tone burst loading with specific frequency contents. The results demonstrate that the proposed solution method accurately models wave dispersion, reduces computational cost, and yields accurate results even for high-frequency loading.

Keywords

References

  1. Abadi, M.T. (2015), "Recursive solution for dynamic response of one-dimensional structures with time-dependent boundary conditions", J. Mech. Sci. Technol., 29(10), 4105-4111. https://doi.org/10.1007/s12206-015-0904-5.
  2. Abadi, M.T. (2017), "An analytical model to predict the impact response of one-dimensional structures", Math. Mech. Solid., 22(12), 2253-2268. https://doi.org/10.1177/1081286516664968.
  3. Abadi, M.T. (2019), "Analytic solution for reflection and transmission coefficients of joints in three-dimensional truss-type structural networks", Arch. Appl. Mech., 89(8), 1521-1536. https://doi.org/10.1007/s00419-019-01525-0.
  4. Abadi, M.T. (2023), "An analytical solution method for transient response of truss-type space frame structures", J. Brazil. Soc. Mech. Sci. Eng., 45(5), 259. https://doi.org/10.1007/s40430-023-04179-w.
  5. Ajith, V. and Gopalakrishnan, S. (2013), "Wave propagation in stiffened structures using spectrally formulated finite element", Eur. J. Mech.-A/Solid., 41, 1-15. https://doi.org/10.1016/j.euromechsol.2013.02.001.
  6. Akkaya, T. and van Horssen, W.T. (2017), "On constructing a Green's function for a semi-infinite beam with boundary damping", Meccanica, 52(10), 2251-2263. https://doi.org/10.1007/s11012-016-0594-9.
  7. Banerjee, J.R. (1997), "Dynamic stiffness formulation for structural elements: A general approach", Comput. Struct., 63(1), 101-113. https://doi.org/10.1016/S0045-7949(96)00326-4.
  8. Chakraborty, A. and Gopalakrishnan, S. (2005), "A spectrally formulated plate element for wave propagation analysis in anisotropic material", Comput. Meth. Appl. Mech. Eng., 194(42), 4425-4446. https://doi.org/10.1016/j.cma.2004.12.003.
  9. Doyle, J.F. (1997), Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms,
  10. Ebrahimian, M., Todorovska, M.I. and Falborski, T. (2017), "Wave method for structural health monitoring: Testing using full-scale shake table experiment data", J. Struct. Eng., 143(4), 4016217. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001712.
  11. Eisenberger, M. (1995), "Dynamic stiffness matrix for variable cross-section Timoshenko beams", Commun. Numer. Meth. Eng., 11(6), 507-513. https://doi.org/10.1002/cnm.1640110605.
  12. Folland, G.B. (1995), Introduction to Partial Differential Equations, Princeton University Press.
  13. Golub, M.V. and Doroshenko, O.V. (2020), "Effective spring boundary conditions modelling wave scattering by an interface with a random distribution of aligned interface rectangular cracks", Eur. J. Mech.-A/Solid., 80, 103894. https://doi.org/10.1016/j.euromechsol.2019.103894.
  14. Gopalakrishnan, S. and Doyle, J.F. (1994), "Wave propagation in connected waveguides of varying cross-section", J. Sound Vib., 175(3), 347-363. https://doi.org/10.1006/jsvi.1994.1333.
  15. Graff, K.F. (2012), Wave Motion in Elastic Solids, Courier Corporation.
  16. Guenther, R.B. and Lee, J.W. (1996), Partial Differential Equations of Mathematical Physics and Integral Equations, Courier Corporation.
  17. Kang, H.K., Tsutahara, M., Ro, K.D. and Lee, Y.H. (2002), "Numerical simulation of shock wave propagation using the finite difference lattice Boltzmann method", KSME Int. J., 16(10), 1327-1335. https://doi.org/10.1007/BF02983840.
  18. Kudela, P., Zak, A., Krawczuk, M. and Ostachowicz, W. (2007), "Modelling of wave propagation in composite plates using the time domain spectral element method", J. Sound Vib., 302(4), 728-745. https://doi.org/10.1016/j.jsv.2006.12.016.
  19. Lee, U. (2009), Spectral Element Method in Structural Dynamics, John Wiley & Sons.
  20. Leung, A.Y. (2012), Dynamic Stiffness and Substructures, Springer Science & Business Media.
  21. Mindlin, R.D. and Goodman, L.E. (1950), "Beam vibrations with time-dependent boundary conditions", J. Appl. Mech., 17(4), 377-380. https://doi.org/10.1115/1.4010161.
  22. Moon, S., Kang, T., Han, S.W., Jeon, J.Y. and Park, G. (2018), "Optimization of excitation frequency and guided wave mode in acoustic wavenumber spectroscopy for shallow wall-thinning defect detection", J. Mech. Sci. Technol., 32(11), 5213-5221. https://doi.org/10.1007/s12206-018-1019-6.
  23. Moon, S.I., Kang, T., Seo, J.S., Lee, J.H., Han, S.W. and Park, J.H. (2018), "Plate bending wave propagation behavior under metal sphere impact loading", J. Mech. Sci. Technol., 32(3), 1117-1124. https://doi.org/10.1007/s12206-018-0214-9.
  24. Sim, W.J. and Lee, S.H. (2005), "Finite element analysis of transient dynamic viscoelastic problems in time domain", J. Mech. Sci. Technol., 19(1), 61. https://doi.org/10.1007/BF02916105.
  25. Sun, L., Shang, Z., Xia, Y., Bhowmick, S. and Nagarajaiah, S. (2020), "Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection", J. Struct. Eng., 146(5), 4020073. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002535.
  26. Xiao, W., Wang, F. and Liu, J. (2017), "Analysis of axial compressive loaded beam under random support excitations", J. Sound Vib., 410, 378-388. https://doi.org/10.1016/j.jsv.2017.08.045.
  27. Yin, X., Wu, W., Zhong, K. and Li, H. (2018), "Dynamic stiffness formulation for the vibrations of stiffened plate structures with consideration of in-plane deformation", J. Vib. Control, 24(20), 4825-4838. https://doi.org/10.1177/1077546317735969.
  28. Zak, A., Krawczuk, M., Palacz, M. and Waszkowiak, W. (2017), "High frequency dynamics of an isotropic timoshenko periodic beam by the use of the time-domain spectral finite element method", J. Sound Vib., 409, 318-335. https://doi.org/10.1016/j.jsv.2017.07.055.