References
- Abadi, M.T. (2015), "Recursive solution for dynamic response of one-dimensional structures with time-dependent boundary conditions", J. Mech. Sci. Technol., 29(10), 4105-4111. https://doi.org/10.1007/s12206-015-0904-5.
- Abadi, M.T. (2017), "An analytical model to predict the impact response of one-dimensional structures", Math. Mech. Solid., 22(12), 2253-2268. https://doi.org/10.1177/1081286516664968.
- Abadi, M.T. (2019), "Analytic solution for reflection and transmission coefficients of joints in three-dimensional truss-type structural networks", Arch. Appl. Mech., 89(8), 1521-1536. https://doi.org/10.1007/s00419-019-01525-0.
- Abadi, M.T. (2023), "An analytical solution method for transient response of truss-type space frame structures", J. Brazil. Soc. Mech. Sci. Eng., 45(5), 259. https://doi.org/10.1007/s40430-023-04179-w.
- Ajith, V. and Gopalakrishnan, S. (2013), "Wave propagation in stiffened structures using spectrally formulated finite element", Eur. J. Mech.-A/Solid., 41, 1-15. https://doi.org/10.1016/j.euromechsol.2013.02.001.
- Akkaya, T. and van Horssen, W.T. (2017), "On constructing a Green's function for a semi-infinite beam with boundary damping", Meccanica, 52(10), 2251-2263. https://doi.org/10.1007/s11012-016-0594-9.
- Banerjee, J.R. (1997), "Dynamic stiffness formulation for structural elements: A general approach", Comput. Struct., 63(1), 101-113. https://doi.org/10.1016/S0045-7949(96)00326-4.
- Chakraborty, A. and Gopalakrishnan, S. (2005), "A spectrally formulated plate element for wave propagation analysis in anisotropic material", Comput. Meth. Appl. Mech. Eng., 194(42), 4425-4446. https://doi.org/10.1016/j.cma.2004.12.003.
- Doyle, J.F. (1997), Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms,
- Ebrahimian, M., Todorovska, M.I. and Falborski, T. (2017), "Wave method for structural health monitoring: Testing using full-scale shake table experiment data", J. Struct. Eng., 143(4), 4016217. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001712.
- Eisenberger, M. (1995), "Dynamic stiffness matrix for variable cross-section Timoshenko beams", Commun. Numer. Meth. Eng., 11(6), 507-513. https://doi.org/10.1002/cnm.1640110605.
- Folland, G.B. (1995), Introduction to Partial Differential Equations, Princeton University Press.
- Golub, M.V. and Doroshenko, O.V. (2020), "Effective spring boundary conditions modelling wave scattering by an interface with a random distribution of aligned interface rectangular cracks", Eur. J. Mech.-A/Solid., 80, 103894. https://doi.org/10.1016/j.euromechsol.2019.103894.
- Gopalakrishnan, S. and Doyle, J.F. (1994), "Wave propagation in connected waveguides of varying cross-section", J. Sound Vib., 175(3), 347-363. https://doi.org/10.1006/jsvi.1994.1333.
- Graff, K.F. (2012), Wave Motion in Elastic Solids, Courier Corporation.
- Guenther, R.B. and Lee, J.W. (1996), Partial Differential Equations of Mathematical Physics and Integral Equations, Courier Corporation.
- Kang, H.K., Tsutahara, M., Ro, K.D. and Lee, Y.H. (2002), "Numerical simulation of shock wave propagation using the finite difference lattice Boltzmann method", KSME Int. J., 16(10), 1327-1335. https://doi.org/10.1007/BF02983840.
- Kudela, P., Zak, A., Krawczuk, M. and Ostachowicz, W. (2007), "Modelling of wave propagation in composite plates using the time domain spectral element method", J. Sound Vib., 302(4), 728-745. https://doi.org/10.1016/j.jsv.2006.12.016.
- Lee, U. (2009), Spectral Element Method in Structural Dynamics, John Wiley & Sons.
- Leung, A.Y. (2012), Dynamic Stiffness and Substructures, Springer Science & Business Media.
- Mindlin, R.D. and Goodman, L.E. (1950), "Beam vibrations with time-dependent boundary conditions", J. Appl. Mech., 17(4), 377-380. https://doi.org/10.1115/1.4010161.
- Moon, S., Kang, T., Han, S.W., Jeon, J.Y. and Park, G. (2018), "Optimization of excitation frequency and guided wave mode in acoustic wavenumber spectroscopy for shallow wall-thinning defect detection", J. Mech. Sci. Technol., 32(11), 5213-5221. https://doi.org/10.1007/s12206-018-1019-6.
- Moon, S.I., Kang, T., Seo, J.S., Lee, J.H., Han, S.W. and Park, J.H. (2018), "Plate bending wave propagation behavior under metal sphere impact loading", J. Mech. Sci. Technol., 32(3), 1117-1124. https://doi.org/10.1007/s12206-018-0214-9.
- Sim, W.J. and Lee, S.H. (2005), "Finite element analysis of transient dynamic viscoelastic problems in time domain", J. Mech. Sci. Technol., 19(1), 61. https://doi.org/10.1007/BF02916105.
- Sun, L., Shang, Z., Xia, Y., Bhowmick, S. and Nagarajaiah, S. (2020), "Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection", J. Struct. Eng., 146(5), 4020073. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002535.
- Xiao, W., Wang, F. and Liu, J. (2017), "Analysis of axial compressive loaded beam under random support excitations", J. Sound Vib., 410, 378-388. https://doi.org/10.1016/j.jsv.2017.08.045.
- Yin, X., Wu, W., Zhong, K. and Li, H. (2018), "Dynamic stiffness formulation for the vibrations of stiffened plate structures with consideration of in-plane deformation", J. Vib. Control, 24(20), 4825-4838. https://doi.org/10.1177/1077546317735969.
- Zak, A., Krawczuk, M., Palacz, M. and Waszkowiak, W. (2017), "High frequency dynamics of an isotropic timoshenko periodic beam by the use of the time-domain spectral finite element method", J. Sound Vib., 409, 318-335. https://doi.org/10.1016/j.jsv.2017.07.055.