DOI QR코드

DOI QR Code

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Xinghua Li (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Zheng Lu (Department of Disaster Mitigation for Structures, Tongji University) ;
  • Siyuan Wu (China Construction Eighth Engineering Division Co. Ltd.)
  • 투고 : 2023.03.01
  • 심사 : 2023.05.29
  • 발행 : 2023.07.25

초록

To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

키워드

과제정보

Financial support from National Key Research and Development Program of China under Grant No. 2020YFB1901402 is highly appreciated. This work is also supported by National Natural Science Foundation of China (52178296) and Program of Shanghai Academic Research Leader (20XD1423900).

참고문헌

  1. Abe, M. (1996), "Rule-based control algorithm for active tuned mass dampers", J. Eng. Mech., 122(8), 705-713. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(705).
  2. Aldawod, M., Samali, B., Naghdy, F. and Kwok, K.C. (2001), "Active control of along wind response of tall building using a fuzzy controller", Eng. Struct., 23(11), 1512-1522. https://doi.org/10.1016/S0141-0296(01)00037-2.
  3. Chung, L.L., Wu, L.Y., Yang, C.S.W., Lien, K.H., Lin, M.C. and Huang, H.H. (2013), "Optimal design formulas for viscous tuned mass dampers in wind-excited structures", Struct. Control Hlth. Monit., 20(3), 320-336. https://doi.org/10.1002/stc.496.
  4. Ghassempour, M., Failla, G. and Arena, F. (2019), "Vibration mitigation in offshore wind turbines via tuned mass damper", Eng. Struct., 183, 610-636. https://doi.org/10.1016/j.engstruct.2018.12.092.
  5. Gourdon, E. and Lamarque, C.H. (2005), "Energy pumping with various nonlinear structures: numerical evidences", Nonlin. Dyn., 40(3), 281-307. https://doi.org/10.1007/s11071-005-6610-6.
  6. Ishida, Y., Liu, J., Inoue, T. and Suzuki, A. (2008), "Vibrations of an asymmetrical shaft with gravity and nonlinear spring characteristics (isolated resonances and internal resonances)", J. Vib. Acost., 130(4), 041004. https://doi.org/10.1115/1.2889475.
  7. Li, C., Li, J. and Yan, Q. (2010), "An optimum design methodology of active tuned mass damper for asymmetric structures", Mech. Syst. Signal Pr., 24(3), 746-765. https://doi.org/10.1016/j.ymssp.2009.09.011.
  8. Lu, X. and Chen, J. (2011), "Mitigation of wind-induced response of Shanghai Center Tower by tuned mass damper", Struct. Des. Tall Spec. Build., 20(4), 435-452. https://doi.org/10.1002/tal.659.
  9. Lu, Z., Wang, Z., Zhou, Y. and Lu, X. (2018), "Nonlinear dissipative devices in structural vibration control: A review", J. Sound Vib., 423, 18-49. https://doi.org/10.1016/j.jsv.2018.02.052.
  10. Mitchell, R., Kim, Y., El-Korchi, T. and Cha, Y.J. (2013), "Wavelet-neuro-fuzzy control of hybrid building-active tuned mass damper system under seismic excitations", J. Vib. Control, 19(12), 1881-1894. https://doi.org/10.1177/1077546312450730.
  11. Mortezaie, H. and Zamanian, R. (2021), "Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD", Struct. Eng. Mech., 77(6), 721-734. https://doi.org/10.12989/sem.2021.77.6.721.
  12. Rong, K. and Lu, Z. (2021), "Performance of a gas-spring tuned mass damper under seismic excitation", Struct. Eng. Mech., 80(2), 157-168. https://doi.org/10.12989/sem.2021.80.2.157.
  13. Rong, K. and Z. Lu (2022), "A novel nonlinear gas-spring TMD for the seismic vibration control of a MDOF structure", Struct. Eng. Mech., 83(1), 31-43. https://doi.org/10.12989/sem.2022.83.1.031.
  14. Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1997), "A method estimating the parameters of tuned mass dampers for seismic applications", Earthq. Eng. Struct. Dyn., 26(6), 617-635. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO,2-Z.
  15. Soltani, P. and Deraemaeker, A. (2021), "Pendulum tuned mass dampers and tuned mass dampers: Analogy and optimum parameters for various combinations of response and excitation parameters", J. Vib. Control, 28(15-16), 2004-2019. https://doi.org/10.1177/10775463211003414.
  16. Venanzi, I., Ubertini, F. and Materazzi, A.L. (2013), "Optimal design of an array of active tuned mass dampers for windexposed high-rise buildings", Struct. Control Hlth. Monit., 20(6), 903-917. https://doi.org/10.1002/stc.1502.
  17. Wang, J.F., Lin, G.L., Lin, C.C. and Jian, J.Y. (2021), "Optimum placement and design of multiple tuned mass dampers for vibration control of asymmetric buildings", J. Vib. Control, 28(23-24), 3875-3889. https://doi.org/10.1177/10775463211038121.
  18. Wang, J., Wang, B., Liu, Z., Zhang, C. and Li, H. (2020), "Experimental and numerical studies of a novel asymmetric nonlinear mass damper for seismic response mitigation", Struct. Control Hlth. Monit., 27(4), e2513. https://doi.org/10.1002/stc.2513.
  19. Wang, J., Wierschem, N., Spencer Jr, B.F. and Lu, X. (2015), "Experimental study of track nonlinear energy sinks for dynamic response reduction", Eng. Struct., 94, 9-15. https://doi.org/10.1016/j.engstruct.2015.03.007.
  20. Wang, W., Yang, Z., Hua, X., Chen, Z., Wang, X. and Song, G. (2021), "Evaluation of a pendulum pounding tuned mass damper for seismic control of structures", Eng. Struct., 228, 111554. https://doi.org/10.1016/j.engstruct.2020.111554.
  21. Wang, Y.R. and Liang, T.W. (2015), "Application of lumped-mass vibration absorber on the vibration reduction of a nonlinear beam-spring-mass system with internal resonances", J. Sound Vib., 350, 140-170. https://doi.org/10.1016/j.jsv.2015.04.002.
  22. Wierschem, N. E., Luo, J., Al-Shudeifat, M., Hubbard, S., Ott, R., Fahnestock, L. A., ... & Bergman, L. A.(2014), "Experimental testing and numerical simulation of a six-story structure incorporating two-degree-of-freedom nonlinear energy sink", J. Struct. Eng., 140(6), 04014027. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000978.
  23. Wierschem, N.E., Hubbard, S.A., Luo, J., Fahnestock, L.A., Spencer, B.F., McFarland, D.M., ... & Bergman, L.A. (2017), "Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers", J. Sound Vib., 389, 52-72. https://doi.org/10.1016/j.jsv.2016.11.003.
  24. Yang, F., Sedaghati, R. and Esmailzadeh, E. (2021), "Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review", J. Vib. Control, 28(7-8), 812-836. https://doi.org/10.1177/1077546320984305.