• Title/Summary/Keyword: pneumatic-driven

Search Result 39, Processing Time 0.02 seconds

The Ball Screw Position Control System Driven by a Pneumatic Motor Using Continous Sliding Mode (연속 슬라이딩 모드를 이용한 공압모터 구동 볼스크류 위치제어 시스템)

  • Kim, Geun-Mook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.4
    • /
    • pp.209-216
    • /
    • 2008
  • The ball screw position control system driven by a pneumatic motor using continuous sliding mode is proposed. The design and performance of proposed servo system are presented by means of examples tested under practical service conditions. Results of experimental implementation on the proposed system illustrate the effectiveness of the ball screw position control system driven by a pneumatic motor using continuous sliding mode as a servo pneumatic actuator driven by a pneumatic motor.

  • PDF

Sliding Mode Control with Velocity Feedforward Gain of a Pneumatic Motor (공압모터의 속도 전향이득을 갖는 슬라이딩 모드 제어)

  • Kim, Geun-Mook;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1061-1064
    • /
    • 2006
  • In this study, the performance of the tracking control of a pneumatic servo motor driven position control system using sliding mode is investigated. It is usually quite difficult to obtain precise tracking control of a pneumatic servo motor driven position control system because of the nonlinear deadband and stick-slip friction of the proportional valve. Therefore, a continuous sliding mode controller with velocity feedforward gain is proposed. Experimental results show that the tracking accurracy can be remarkably improved by adding a proper velocity feedforward term to continuous sliding mode controller.

Friction Compensation for Impedance Control of Pneumatic Manipulator (공압매니퓰레이터의 임피던스제어를 위한 마찰보상법)

  • Park, Jung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.252-260
    • /
    • 1997
  • In this paper, a friction compensation method using a disturbance observer is proposed for an impedance control of pneumatic manipulator. It is assumed that the generated torque by a pneumatic actuator can be estimated based on the pressure signals and the discharge volume. In order to improve the dynamic characteristics of the pneumatic actuator driven by meter out method, we construct the inner torque control system by feeding back the generated torque. In order to reduce the influence of disturbances comprising friction torque and parameter variations of plant, the impedance control system is constructed with a disturbance observer which estimates the disturbances based on the generated torque of pneumatic actuator, the angular velocity and the reaction torque. From some experiments, it is confirmed that the proposed control system is effective to improve the robustness for the friction torque in the impedance control of a pneumatic manipulator.

Pressure Control of a Piezoactuator-Driven Pneumatic Valve System (압전 작동기로 구동 되는 공압 밸브의 압력제어)

  • Jo, Myeong-Su;Yu, Jung-Gyu;Choe, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.399-405
    • /
    • 2002
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust H$_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

[ $H_{\infty}$ ] Pressure Control of Pneumatic Valve Driven by Piezoactuators (압전 작동기로 구동 되는 공압 밸브의 $H_{\infty}$ 압력제어)

  • Yoo, J.K.;Cho, M.S.;Choi, S.B.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.673-678
    • /
    • 2001
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust $H_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

  • PDF

Improvement of Intermittent Advancing Accuracy of Pneumatic Cylinder-Driven Roll Feeder

  • So, Jung Duck
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.164-170
    • /
    • 2016
  • A proposed pneumatic cylinder-driven roll feeder and an air press were designed to be operated automatically by a PLC. The accuracy of the intermittent feed pitch of the roll feeder was evaluated by measuring lengths of cut-offs of a strip stock by a digimatic vernier caliper. At each predetermined feed pitch, the proposed roll feeder was tested 100 times by varying the feed/cut intervals as 2.0/1.5, 3.0/2.0, and 3.5/2.5 s as test sets. The lengths of the cutoffs of the strip stock ranged from 9.89-10.34, 12.1-12.65, and 15.21-15.67 mm at the predetermined 10, 12, and 15 mm feed pitch, respectively, among the total of 300 samples in each feed pitch, regardless of the feed/shear interval. Therefore, the feed/cut interval at each selected feed pitch was found to have no effect on the accuracy of the intermittent advancing of the strip stock.

Pressure Control of a Piezoactuator-Driven Pneumatic Valve System (압전 작동기로 구동되는 공압 밸브의 압력제어)

  • Cho, M.S.;Yoo, J.K.;Choi, S.B.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.554-558
    • /
    • 2000
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a sliding mode controller which is known to be robust to uncertainties such as disturbance is formulated in order to achieve accurate regulating and tracking control of the desired pressure. The controller is experimentally realized and control performances for various pressure trajectories are presented in time domain. The control bandwidth of the valve system which directly represents the fastness is also evaluated in the frequency domain.

  • PDF

Development of a design and simulation program for pneumatic systems using computer graphics (공압회로 설계및 시뮬레이션을 위한 소프트웨어 개발)

  • 손성용;신은주;이대길;곽윤근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.305-309
    • /
    • 1988
  • Drawing pneumatic circuits by hand and searching for the error when the circuit is not properly constructed are very difficult. In this paper, a graphic simulation program for drawing and evaluating pneumatic circuit systems was developed. The porgram is menu-driven style and pneumatic circuit can be easily drawn by selecting the pneumatic components from the menus. Simulation of the motion of each pneumatic component and testing of whether the circuit is constructed properly are possible with the software. This program was written in Turbo Pascal and also used the Turbo Graphix Toolbox. The system hardware requires IBM PC, XT, AT or compatibles, and Hercules Card.

  • PDF

Studies on control mechanism and performance of a novel pneumatic-driven active dynamic vibration absorber

  • Kunjie Rong;Xinghua Li;Zheng Lu;Siyuan Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.117-127
    • /
    • 2023
  • To efficiently attenuate seismic responses of a structure, a novel pneumatic-driven active dynamic vibration absorber (PD-ADVA) is proposed in this study. PD-ADVA aims to realize closed-loop control using a simple and intuitive control algorithm, which takes the structure velocity response as the input signal and then outputs an inverse control force to primary structure. The corresponding active control theory and phase control mechanism of the system are studied by numerical and theoretical methods, the system's control performance and amplitude-frequency characteristics under seismic excitations are explored. The capability of the proposed active control system to cope with frequency-varying random excitation is evaluated by comparing with the optimum tuning TMD. The analysis results show that the control algorithm of PD-ADVA ensures the control force always output to the structure in the opposite direction of the velocity response, indicating that the presented system does not produce a negative effect. The phase difference between the response of uncontrolled and controlled structures is zero, while the phase difference between the control force and the harmonic excitation is π, the theoretical and numerical results demonstrate that PD-ADVA always generates beneficial control effects. The PD-ADVA can effectively mitigate the structural seismic responses, and its control performance is insensitive to amplitude. Compared with the optimum tuning TMD, PD-ADVA has better control performance and higher system stability, and will not have negative effects under seismic wave excitations.

Development of Self-Driven Pneumatic Robot for Boresonic Examination of Turbine Rotor (터빈로터 중심공 검사용 자기주행 공압형 로봇 개발)

  • Kang, Baejun;An, Myungjae;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • This study presents a new principle for driving the robot aimed at reducing the position error for the boresonic examination of turbine rotor. The conventional method of inspection is performed by installing manipulator onto the flange of the turbine rotor and connecting a pipe, which is then being pushed into the bore. The longer the pipe gets, the greater sagging and distortion appear, making it difficult for the ultrasonic sensor to contact with the internal surface of the bore. A pneumatic pressure will ensure the front or rear feet of the robot in close contact with the inner wall to prevent slipping, while the ball screw on the body of the robot will rotate to drive it in the axial direction. The compression force required for tight contact was calculated in the form of a three-point support, and a static structural simulation analysis was performed by designing and modeling the robot mechanism. The driving performance and ultrasonic detection ability have been tested by fabricating the robot, the test piece for ultrasonic calibration and the transparent mock-up for robot demonstration. The tests have confirmed that no slipping occurs at a certain pneumatic pressure or over.