DOI QR코드

DOI QR Code

Effect of Manganese Sulfate Concentration in Media on Production Speed of Insecticidal Crystal by Bacillus thuringiensis

배지 중 Manganese sulfate 농도가 Bacillus thuringiensis의 곤충독소 생성 시간에 미치는 영향

  • Ro-Un Lee (Department of Food Science and Technology, Sunchon National University) ;
  • Do Gyung Oh (Department of Food Science and Technology, Sunchon National University) ;
  • Eun-Sun Jeong (Department of Food Science and Technology, Sunchon National University) ;
  • Jung-Beom Kim (Department of Food Science and Technology, Sunchon National University)
  • Received : 2023.05.14
  • Accepted : 2023.06.12
  • Published : 2023.06.30

Abstract

In this study, the effect of MnSO4 on the insecticidal crystal (IC) produced by Bacillus thuringiensis for a rapid detection medium was analyzed. The strains used included one B. thuringiensis reference (KCTC 1511) and nine wild-type strains. The IC in B. thuringiensis was detected following the method published by the Ministry of Food and Drug Safety in Korea. In the nutrient agar to which 0.005% MnSO4 was added, IC was observed on two of the three plates after 48 hours of incubation and on all three plates after 120 hours. In AK agar, IC was observed on one and two of the three plates after 48 and 96 hours of incubation, respectively. These results indicated that 0.005% MnSO4 nutrient agar is more appropriate than AK agar for production of IC in B. thuringiensis. The effect of various MnSO4 concentrations on IC production was studied after 24 hours of incubation. IC was produced on 1 of the 10 plates with 0.000% MnSO4 nutrient agar, 2 of the 10 plates with 0.001% MnSO4 nutrient agar, and 3 of the 10 plates with 0.002% MnSO4 nutrient agar. IC was not observed for the other nutrient agars containing 0.003%-0.009% MnSO4. These results indicated that nutrient agar with 0.002% MnSO4 led to the most rapid production of IC by B. thuringiensis after 24 hours of incubation. However, the conditions for IC production by B. thuringiensis depended on the incubation conditions and strain activity. Therefore, further studies are needed to verify the effects of 0.002% MnSO4 on the production of IC by various Bacillus thuringiensis strains.

본 연구에서는 MnSO4이 B. thuringiensis의 곤충독소 형성에 미치는 영향을 분석하여 신속 검출배지 개발의 기초자료를 제안하고자 하였다. 본 실험에 사용한 균주는 순천대학교 식품위생안전실험실에 보관되어 있던 B. thuringiensis reference 1주(KCTC 1511)와 식품에서 분리된 wild type strain 9주를 사용하였다. B. thuriengiensis의 곤충독소 생성 확인은 식품의약품안전처의 곤충독소 확인시험법에 따라 실험하였다. 0.005%-MnSO4이 첨가된 Nutrient agar는 배양 48시간에 3개 평판 중 2개 평판(66.6%)에서 곤충독소가 관찰되었고, 120시간에 3개 평판(100%) 모두에서 곤충독소가 관찰되었다. AK agar는 48시간 배양 후 3개 평판 중 1개 평판(33.3%)에서 곤충독소가 관찰되었으며, 배양 120시간에 3개 평판(100%) 모두에서 곤충독소가 관찰되었다. 이러한 결과는 포자형성에 사용되는 AK agar보다 식품공전에서 제시하고 있는 포자형성 배지인 0.005%-MnSO4 Nutrient agar가 B. thuringiensis의 곤충독소를 신속하게 생성시키는 것으로 나타났다. B. thuringiensis 10개 균주를 24시간 배양하여 관찰한 결과, 0.000%-MnSO4 배지에서 10개 평판 중 1개 평판(10%), 0.001%-MnSO4이 첨가된 배지의 10개 평판 중 2개 평판(20%)에서 곤충독소가 관찰되었다. 0.002%-MnSO4이 첨가된 배지는 10개 평판 중 3개 평판(30%)에서 곤충독소가 관찰되었다. 0.003%-0.009%-MnSO4이 첨가된 배지에서는 곤충독소가 관찰되지 않았다. 이러한 결과로 보아 24시간 배양 시까지는 0.002%-MnSO4이 첨가된 Nutrient agar가 B. thuringiensis의 곤충독소를 가장 신속하게 생성시키는 것으로 나타났다. B. thuringiensis의 곤충독소는 포자형성과 동시에 생성된다는 보고와 MnSO4이 포자형성에 기여한다는 보고를 종합하여 보면, MnSO4이 B. thuringiensis의 포자형성을 가속화하고 이로 인해 곤충독소도 신속하게 생성된 것으로 판단된다. 따라서 B. thuringiensis의 곤충독소를 신속하게 생성하기 위해 기존 식품공전에서 제시하고 있는 Nutrient agar보다 0.002%-MnSO4이 첨가된 Nutrient agar를 사용하는 것이 효율적일 것으로 판단된다. 그러나 Nutrient agar와 0.002%-MnSO4 Nutrient agar의 24시간 배양 후 곤충독소 생성율의 차이는 작게 나타나 다수의 wild type B. thuringiensis를 대상으로 추가적인 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Rasko, D.A., Altherr, M.R., Han, C.S., Ravel, J., Genomics of the Bacillus cereus group of organisms, Microbiol. Rev., 29, 303-329 (2005). 
  2. Kim, M.G., Choi, J.C., Biotoxins involved in foodborne disease and their control enterotoxins and emetic toxin of B. cereus, Food Sci. Ind., 42, 2-9 (2009). 
  3. Koo, M.S., Bacillus cereus : An ambusher of food safety, Bull. Food Tec., 22, 587-600 (2009). 
  4. Kim, T.S., Km, M.J., Kang, Y.M., Oh, G.N., Choi, S.Y., Oh, M.S., Yang, Y.S., Seo, J.M., Ryu, M.G., Kim, E.S., Ha, D.R., Cho, B.S., Molecular characterization and toxin profile of Bacillus cereus strains isolated from ready-to-eat foods, Korean J. Food Sci. Technol., 46, 334-340 (2014).  https://doi.org/10.9721/KJFST.2014.46.3.334
  5. Ministry of Food and Drugs Safety, (2022, November 26). Guidelines for examination of the cause of food poisoning in 13 years. Retrieved from, https://www.mfds.go.kr/brd/m_218/view.do?seq=15126&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=49 
  6. Kim, H.S., Roh, J.Y., Lee, D.W., Chang, J.H., Je, Y.H., Woo, S.D., Kim, J.K., Yu, Y.M., Kang, S.K., Formulation of a new Bacillus thuringiensis strain NT0423, Korean J. Appl. Microbiol. Biotechnol., 26, 358-364 (1998). 
  7. Park, K.S., Development of biopesticide and role of Bacillus spp., KIC News, 14, 1-11 (2011). 
  8. Kil, M.R., Kim, D.A., Choi, S.Y., Paek, S.K., Kim, J.S., Jin, D.Y., Hwang, I.C., Yu, Y.M., Characterization of biopesticides(Bacillus thuringiensis) produced in Korea, Korean J. Pes. Sci., 11, 201-209 (2007). 
  9. Ministry of Food and Drug Safety,(2022, November 14). Report on risk assessment of food poisoning bacteria in instant foods (2). Retrieved from, https://www.nifds.go.kr/brd/m_271/view.do?seq=12558 
  10. Kim, K.S., Kim, H., Park, Y.U., Kim, G.H., Kim, Y.G., An integrated biological control using an endoparasitoid wasp (Cotesia plutellae) and a microbial insecticide (Bacillus thuringiensis) against the diamondback moth, Plutella xylostella, Korean J. Appl. Entomol., 52, 35-43 (2013).  https://doi.org/10.5656/KSAE.2013.01.1.080
  11. Espacenet Patent search,(2022, November 23). Diagnostic primer sets for detecting Bacillus cereus group bacteria and diagnostic method using same. Retrieved from, https://worldwide.espacenet.com/patent/search/family/060943342/publication/KR20170136248A?q=pn%3DKR20170136248A 
  12. Ministry of Food and Drugs Safety,(2022, November 14). Insecticidal crystal protein manual. Retrieved from, https://impfood.mfds.go.kr/CFBDD06F02/getCntntsDetail?cntntsSn=288612 
  13. Im, J.Y., Kim, C.Y., Kim, E.Y., Kim, M.J., Kim, J.B., Effect of sterilization conditions on microbial reduction in cleaning tools, J. Food Hyg. Saf., 37, 310-316 (2022).  https://doi.org/10.13103/JFHS.2022.37.5.310
  14. Eom, S.H., Park, Y.J., Kim, Y.G., A technique to enhance Bacillus thuringiensis spectrum and control efficacy using cry toxin mixture and immunosuppressant, Korean J. Pes. Sci., 18, 181-190 (2014).  https://doi.org/10.7585/kjps.2014.18.3.181
  15. Rural Development Administration. 2009. Agricultural microbiological field utilization manual. Section 6. supplement. Retrieved from, https://life.seocheon.go.kr/cop/bbs/BBSMSTR_000000000341/selectBoardArticle.do?nttId=B00000202340ji3hK1qu5ar8 
  16. Arret, B., Kirshbaum, A., A rapid disc assay method for detecting penicillin in milk, J. Milk Food Technol., 22, 329-331 (1959).  https://doi.org/10.4315/0022-2747-22.11.329
  17. Richardson., 1985. Standard methods for the examination of dairy products, 15th ed. American Public Health Association. Washington D.C, USA 
  18. Ministry of Food and Drugs Safety[MFDS]. 2022. Korea food code. Article 8. General Test Methods. Retrieved from, https://foodsafetykorea.go.kr/foodcode/01_03.jsp?idx=11193