DOI QR코드

DOI QR Code

In Silico Studies of Indole Derivatives as Antibacterial Agents

  • Mridul Shah (Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab) ;
  • Adarsh Kumar (Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab) ;
  • Ankit Kumar Singh (Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab) ;
  • Harshwardhan Singh (Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab) ;
  • Balasubramanian Narasimhan (Department of Pharmaceutical Sciences, Maharshi Dayanand University) ;
  • Pradeep Kumar (Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab)
  • Received : 2022.06.05
  • Accepted : 2022.12.12
  • Published : 2023.06.30

Abstract

Objectives: Molecular docking and QSAR studies of indole derivatives as antibacterial agents. Methods: In this study, we used a multiple linear regressions (MLR) approach to construct a 2D quantitative structure activity relationship of 14 reported indole derivatives. It was performed on the reported antibacterial activity data of 14 compounds based on theoretical chemical descriptors to construct statistical models that link structural properties of indole derivatives to antibacterial activity. We have also performed molecular docking studies of same compounds by using Maestro module of Schrodinger. A set the molecular descriptors like hydrophobic, geometric, electronic and topological characters were calculated to represent the structural features of compounds. The conventional antibiotics sultamicillin and ampicillin were not used in the model development since their structures are different from those of the created compounds. Biological activity data was first translated into pMIC values (i.e. -log MIC) and used as a dependent variable in QSAR investigation. Results: Compounds with high electronic energy and dipole moment were effective antibacterial agents against S. aureus, indole derivatives with lower κ2 values were excellent antibacterial agents against MRSA standard strain, and compounds with lower R value and a high 2χv value were effective antibacterial agents against MRSA isolate. Conclusion: Compounds 12 and 2 showed better binding score against penicillin binding protein 2 and penicillin binding protein 2a respectively.

Keywords

Acknowledgement

Authors are thankful to Central University of Punjab, Bathinda and DST-FIST for providing infrastructural support.

References

  1. Kumavath R. Antibacterial agents. London: IntechOpen; 2017.
  2. Harbarth S, Balkhy HH, Goossens H, Jarlier V, Kluytmans J, Laxminarayan R, et al. Antimicrobial resistance: one world, one fight! Antimicrob Resist Infect Control. 2015;4:49.
  3. Gupta PD, Birdi TJ. Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med. 2017;8(4):266-75. https://doi.org/10.1016/j.jaim.2017.05.004
  4. Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science. 1992;257(5073):1050-5. https://doi.org/10.1126/science.257.5073.1050
  5. Raju PAG, Mallikarjunarao R, Gopal KV, Sreeramulu J, Krishnamurthi KP, Reddy SR. Synthesis and biological activity of some new indole derivatives containing pyrazole moiety. J Chem Pharm Res. 2013;5(10):21-7.
  6. Walmik P, Saundane AR. Synthesis of novel indolyl-azetidinone and thiazolidinone derivatives as a potent antioxidant, antimicrobial and antitubercular agents. Der Pharma Chem. 2014;6(4):70-9.
  7. Guerra AS, Malta DJ, Laranjeira LP, Maia MB, Colaco NC, de Lima Mdo C, et al. Anti-inflammatory and antinociceptive activities of indole-imidazolidine derivatives. Int Immunopharmacol. 2011;11(11):1816-22. https://doi.org/10.1016/j.intimp.2011.07.010
  8. Iddalingamurthy E, Mahadevan KM, Jagadeesh NM, Kumara MN. Synthesis and docking study of 3-(N-alkyl/aryl piperidyl) indoles with serotonin-5HT, H1 and CCR2 antagonist receptors. Int J Pharm Pharma Sci. 2014;6(4):475-82.
  9. Muralikrishna S, Raveendrareddy P, Ravindranath LK, Harikrishna S, Jagadeeswara Rao P. Synthesis Characterization and antitumor activity of thiazole derivatives containing indole moiety bearing-tetrazole. Der Pharma Chem. 2013;5(6):87-93.
  10. Raju GN, Sai KB, Prasanna ML, Aparna V, Chandana K, Nadendla RR. Synthesis, characterization and biological activity of some 1, 3, 4-oxadiazole derivatives with indole moiety. Der Pharm Lett. 2015;7(5):153-9.
  11. Estevao MS, Carvalho LC, Ribeiro D, Couto D, Freitas M, Gomes A, et al. Antioxidant activity of unexplored indole derivatives: synthesis and screening. Eur J Med Chem. 2010;45(11):4869-78. https://doi.org/10.1016/j.ejmech.2010.07.059
  12. Rohini RM, Manjunath M. Synthesis and anti-convulsant activity of triazothiole/thiazolyl thiazolidinone derivatives of indole. Der Pharma Chem. 2012;4(6):2438-41.
  13. Delorenzi JC, Attias M, Gattass CR, Andrade M, Rezende C, da Cunha Pinto A, et al. Antileishmanial activity of an indole alkaloid from Peschiera australis. Antimicrob Agents Chemother. 2001;45(5):1349-54. https://doi.org/10.1128/AAC.45.5.1349-1354.2001
  14. Mondal P, Jana S, Balaji A, Ramakrishna R, Kanthal L. Synthesis of some new isoxazoline derivatives of chalconised indoline 2-one as a potential analgesic, antibacterial and anthelmimtic agents. J Young Pharm. 2012;4(1):38-41. https://doi.org/10.4103/0975-1483.93574
  15. Poojitha J, Mounika KN, Raju GN, Nadendla RR. Indole: the molecule of diverse pharmacological activities. World J Pharm Res. 2015;4(12):656-66.
  16. Rose WC. The nutritive significance of the amino acids. Physiol Rev. 1938;18(1):109-36. https://doi.org/10.1152/physrev.1938.18.1.109
  17. Dhani R, Avinash A, Salenaagina SK, Saicharan Teja MV, Masthanaiah P, Rathnam R, et al. Indole: the molecule of diverse pharmacological activities. J Chem Pharm Res. 2011;3(5):519-23.
  18. Rajandran T, Prabhu R, Prabhu M. Molecular docking studies of indole derivatives containing cyanide group as hepatitis C Ns5b polymerase inhibitor. Pharma Innov. 2015;4(9):43-8.
  19. Nantasenamat C, Isarankura-Na-Ayudhya C, Naenna T, Prachayasittikul V. A practical overview of quantitative structureactivity relationship. EXCLI J. 2009;8:74-88.
  20. El-Sayed MT, Suzen S, Altanlar N, Ohlsen K, Hilgeroth A. Discovery of bisindolyl-substituted cycloalkane-anellated indoles as novel class of antibacterial agents against S. aureus and MRSA. Bioorg Med Chem Lett. 2016;26(1):218-21. https://doi.org/10.1016/j.bmcl.2015.10.085
  21. Van Den Driessche G, Fourches D. Adverse drug reactions triggered by the common HLA-B*57:01 variant: a molecular docking study. J Cheminform. 2017;9:13.
  22. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221-34. https://doi.org/10.1007/s10822-013-9644-8
  23. Kumar S, Singh J, Narasimhan B, Shah SAA, Lim SM, Ramasamy K, et al. Reverse pharmacophore mapping and molecular docking studies for discovery of GTPase HRas as promising drug target for bis-pyrimidine derivatives. Chem Cent J. 2018;12(1):106.
  24. Sharma V, Sharma PC, Kumar V. In silico molecular docking analysis of natural pyridoacridines as anticancer agents. Adv Chem. 2016;2016:5409387.
  25. Singh J, Kumar M, Mansuri R, Sahoo GC, Deep A. Inhibitor designing, virtual screening, and docking studies for methyltransferase: a potential target against dengue virus. J Pharm Bioallied Sci. 2016;8(3):188-94. https://doi.org/10.4103/0975-7406.171682
  26. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49(21):6177-96. https://doi.org/10.1021/jm051256o
  27. Lenselink EB, Louvel J, Forti AF, van Veldhoven JPD, de Vries H, Mulder-Krieger T, et al. Predicting binding affinities for GPCR ligands using free-energy perturbation. ACS Omega. 2016;1:293-304. https://doi.org/10.1021/acsomega.6b00086
  28. Hansch C, Fujita T. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. Am Chem Soc. 1964;86(8):1616-26. https://doi.org/10.1021/ja01062a035
  29. Kier LB, Hall LH. The kappa indices for modeling molecular shape and flexibility. In: Devillers J, Balaban AT, editors. Topological indices and related descriptors in QSAR and QSPR. London: CRC Press; 1999. p. 465-500.
  30. Randic M. Characterization of molecular branching. J Am Chem Soc. 1975;97(23):6609-15. https://doi.org/10.1021/ja00856a001
  31. Balaban AT. Highly discriminating distance-based topological index. Chem Phys Lett. 1982;89(5):399-404. https://doi.org/10.1016/0009-2614(82)80009-2
  32. Furusjo E, Svenson A, Rahmberg M, Andersson M. The importance of outlier detection and training set selection for reliable environmental QSAR predictions. Chemosphere. 2006;63(1):99-108. https://doi.org/10.1016/j.chemosphere.2005.07.002
  33. Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model. 2002;20(4):269-76. https://doi.org/10.1016/S1093-3263(01)00123-1
  34. Narasimhan B, Judge V, Narang R, Ohlan R, Ohlan S. Quantitative structure-activity relationship studies for prediction of antimicrobial activity of synthesized 2,4-hexadienoic acid derivatives. Bioorg Med Chem Lett. 2007;17(21):5836-45. https://doi.org/10.1016/j.bmcl.2007.08.037
  35. Kumar A, Singh AK, Thareja S, Kumar P. A review of pyridine and pyrimidine derivatives as anti-MRSA agents. Antiinfect Agents. 2023;21(2):e050722206610.