DOI QR코드

DOI QR Code

Anti-oxidative, Acetylcholinesterase Inhibitory Activities and Acute Toxicity Study of Nepeta sibirica L.

  • Gonchig Enkhmaa (Department of Pharmacology, School of Bio-Medicine, Mongolian National University of Medical Sciences) ;
  • Gendaram Odontuya (Department of Pharmaceutical Chemistry and Pharmacognosy, Mongolian University of Pharmaceutical Sciences) ;
  • Erdenetsogt Purevdorj (Natural Product Chemistry Laboratory, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences) ;
  • Munkhbat Nomin (Natural Product Chemistry Laboratory, Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences) ;
  • Gansukh Enkhjin (Department of Pharmacology, School of Bio-Medicine, Mongolian National University of Medical Sciences) ;
  • Tserendash Chimgee (Department of Pharmacology, School of Bio-Medicine, Mongolian National University of Medical Sciences) ;
  • Chultemsuren Yeruult (Department of Pharmacology, School of Bio-Medicine, Mongolian National University of Medical Sciences)
  • Received : 2022.10.21
  • Accepted : 2023.04.18
  • Published : 2023.06.30

Abstract

Nepeta sibirica L. or Siberian catmint is a medicinal plant species used in Mongolian traditional medicine for curing human different disorders and veterinary practices. The previous study of the whole plant concentrated on the determination of its essential oil composition and reported that the major ones are sesquiterpenes, including nepetalactone. The aim of this study was to reveal a new biological activity of the above-ground parts of N. sibirica L. and compare the activity of different extracts correlating with the content of biologically active compounds and evaluate their toxicity. For this purpose, anti-oxidative and acetylcholinesterase inhibitory activities of the above-ground parts of N. sibirica L. aqueous and ethanol (EtOH) (40%, 70%) extracts were assayed spectrophotometrically. The aqueous extract showed positive anti-oxidative activity by both tested DPPH and FRAP assays with IC50 134.24 ± 1.42 mg/mL and FRAP value 1385.15 ± 8.12 µmol/L at 200 ㎍/mL, in contrast to 40% and 70% EtOH extracts. The 70% EtOH extract presented the highest acetylcholinesterase inhibitory activity (IC50 77.29 ± 0.38 mg/mL) followed by 40% EtOH extract (176.72 ± 0.35 mg/mL) and aqueous extract (275.41 ± 0.23 mg/mL). Total phenolics were found to be gallic acid equivalent, % 3.74 ± 0.05 (70% EtOH), 3.94 ± 0.04 (40% EtOH), and 3.79 ± 0.16 (aqueous), whereas the total flavonoids as a rutin equivalent, % as 2.01 ± 0.12, 1.44 ± 0.17 and 1.99 ± 0.02, each. The aqueous extract showed the best anti-oxidative and lowest activity against the acetylcholinesterase; however, the 70% EtOH extract showed the opposite effects than that of the aqueous. No mortality incidence was visible at various doses, indicating that the oral median lethal dose of aqueous and 70% EtOH extracts were considered greater than 5000 mg/kg. N. sibirica L. belongs to the non-toxic category of the OECD 423 classification.

Keywords

Acknowledgement

The authors are grateful to the Ministry of Education and Science of Mongolia (Fundamental Research Project Number 2020/25), and the Project of Division for Science and Technology, Mongolian National University of Medical Sciences (Project Number 1/29). We would like to thank Editage (www.editage.com) for English language editing.

References

  1. Mongolian Nature, Mongolian Flora and Changes (Urgamal, M.), Mongolia, 2017, pp 3-65. 
  2. Natural Product Chemistry Laboratory Anniversary 45: Main Research Results of Natural Product Chemistry Laboratory; Batsuren, D. Ed; Soyombo printing; Mongolia, 2018, pp 14-57. 
  3. Odontuya, G. Secondary metabolites of Mongolian some medicinal plant species: molecular structures and scientific basis of the utilization; ScD Dissertation; Mongolia, 2021, pp 43-44. 
  4. Ligaa, U.; Davaasuren, B.; Ninjil, N. Application of Mongolian medicinal plants in western amd eastern medicine, Mongolia, 2005, pp 240-241. 
  5. Grubov, V. I. Key to the vascular plants of Mongolia; Mongolia, 2008, pp 256, 258. 
  6. Formisano, C.; Rigano, D.; Senatore, F. Chem. Biodivers. 2011, 8, 1783-1818.  https://doi.org/10.1002/cbdv.201000191
  7. Sharma, A.; Cooper, R.; Bhardwaj G.; Cannoo, D. S. J. Ethnopharm. 2021, 268, 113679. 
  8. Dienaite, L.; Pukalskiene, M.; Matias, A. A.; Pereira, C. V.; Pukalskas, A.; Venskutonis, P. R. J. Funct. Foods 2018, 45, 512-522. 
  9. Irekhbayar, J.; Amarjargal, A.; Altantsetseg, S.; Bayarkhuu, B.; Ouyntsetseg, C. J. Appl. Sci. 2020, 6, 121-131. 
  10. Tsuruoka, T.; Bekh-Ochir, D.; Kato, F.; Sanduin, S.; Shataryn, A.; Ayurzana, A.; Satou, T.; Li, W.; Koike, K. J. Essent. Oil Res. 2012, 24, 555-559.  https://doi.org/10.1080/10412905.2012.729925
  11. Wagner, H.; Bladt, S. Plant drug analysis: A thin layer chromatography atlas; Germany, 1996, pp 195-244. 
  12. Singleton, V. L.; Rossi, J. A. J. Enol. Vitic. 1965, 16, 144-153.  https://doi.org/10.5344/ajev.1965.16.3.144
  13. Maurya, S.; Singh, D. Int. J. PharmTech Res. 2010, 2, 2403-2406. 
  14. Smirnova, L. P.; Pervykh, L. N. Pharm. Chem. J. 1998, 32, 321-324.  https://doi.org/10.1007/BF02580519
  15. Christ, B.; Mueller, K. H. Arch. Pharm. Ber. Dtsch. Ges. 1960, 293, 1033-1042.  https://doi.org/10.1002/ardp.19602931202
  16. Mensor, L. L.; Menezes, F. S.; Leitao, G. G.; Reis, A. S.; dos Santos, T. C.; Coube, C. S.; Leitao, S. G. Phytother. Res. 2001, 15, 127-130.  https://doi.org/10.1002/ptr.687
  17. Benzie, I.F.F.; Devaki, M. The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: concepts, procedures, limitations and applications, John Wiley & Sons Ltd.; 2018, pp 77-106. 
  18. Benzie, I. F.; Strain, J. J. Anal. Biochem. 1996, 239, 70-76.  https://doi.org/10.1006/abio.1996.0292
  19. Ellman, G. L.; Courtney, K. D.; Andres, V. Jr.; Feather-Stone, R. M. Biochem. Pharmacol. 1961, 7, 88-95. 
  20. Hay, D. L.; Ibrahim, G. F.; Horacek, I. Clin. Chem. 1983, 29, 1065-1069.  https://doi.org/10.1093/clinchem/29.6.1065
  21. Acute Oral toxicity - Acute Toxic Class Method. OECD Guidelines for the Testing of Chemicals: Section 4; OECD; France, 2002, Test No. 423. 
  22. Luna, L. G. Manual of histologic staining methods of the Armed Forces Institute of Pathology; USA, McGraw-Hill, 1968, p 258. 
  23. Slaoui, M.; Fiette, L. Drug Saf. Eval. 2011, 691, 69-82.  https://doi.org/10.1007/978-1-60761-849-2_4
  24. Maisuthisakul, P.; Suttajit, M.; Pongsawatmanit, R. Food Chem. 2007, 100, 1409-1418.  https://doi.org/10.1016/j.foodchem.2005.11.032
  25. Petukhova, О. V.; Ivanova, G. А.; Оleshko, G. I.; Mukhamedjanova, D. M. Pharmacy 2003, 5, 19-20. 
  26. Mosquera, O. M.; Correa, Y. M.; Buitrago, D. C.; Nino, J. Mem. Inst. Oswaldo Cruz. 2007, 102, 631-634.  https://doi.org/10.1590/S0074-02762007005000066
  27. Dos Santos, T. C.; Gomes, T. M.; Pinto, B. A. S.; Camara, A. L.; de Andrade Paes, A. M. Front. Pharmacol. 2018, 9, 1192.
  28. Khan, H.; Marya.; Amin, S.; Kamal, M. A.; Patel, S. Biomed. Pharmacother. 2018, 101, 860-870.  https://doi.org/10.1016/j.biopha.2018.03.007
  29. Kahkeshani, N.; Razzaghirad, Y.; Ostad, S. N.; Hadjiakhoondi, A.; Ardekani, M. R. S.; Hajimehdipoor, H.; Attar, H.; Samadi, M.; Jovel, E.; Khanavi, M. J. Essent. Oil-Bear. Plants. 2014, 17, 544-552.  https://doi.org/10.1080/0972060X.2014.929040
  30. Yilmaz, A.; Boga, M.; Topcu, G. Rec. Nat. Prod. 2016, 10, 530-541. 
  31. Akdeniz, M.; Ertas, A.; Yener, I.; Firat, M.; Kolak, U. J. Food Biochem. 2019, 44, e13124. 
  32. Satish, S. Asian J. Biomed. Pharm. Sci. 2013, 3, 42-48. 
  33. Zhu, J. J.; Zeng, X. P.; Berkebile, D.; DU, H. J.; Tong, Y.; Qian, K. Med. Vet. Entomol. 2009, 23, 209-216.  https://doi.org/10.1111/j.1365-2915.2009.00809.x
  34. Rahmouni, B.; Alaoui, K.; Bouidida, E. H.; Chammache, M.; Khamar, H.; Cherrah, Y.; Idrissi, A. I. Int. J. Pharm. Bio. Sci. 2015, 6, 73-80.