DOI QR코드

DOI QR Code

Therapeutic Efficacy of Methanol Extract of Bidens tripartita in HT22 Cells by Neuroprotective Effect

  • Yerim Son (Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University) ;
  • Choong Je Ma (Department of Medical Biomaterials Engineering, College of Biomedical Sciences, Kangwon National University)
  • Received : 2023.02.23
  • Accepted : 2023.03.27
  • Published : 2023.06.30

Abstract

Oxidative stress brings about apoptosis through various mechanisms. In particular, oxidative stress in neuronal cells can causes a variety of brain diseases. This study was conducted to investigate the effect of Bidens tripartita on oxidative stress in neuronal cells. B. tripartita has traditionally been used in Russia as a medicine for diseases such as rhinitis, angina and colitis. Over-production of glutamate induces oxidative stress. When the oxidative stress occurs in the cells, reactive oxygen species (ROS) and Ca2+ increase. In addition, the abrupt decline of mitochondrial membrane potential and the decrease of glutathione related enzymes such as glutathione reductase (GR) and glutathione peroxidase (GPx) are also observed. The samples used in the experiment showed cytoprotective effect in the MTT assay. It also lowered the ROS and Ca2+ level, and increased degree of mitochondrial membrane potential, GR and GPx. As a result, B. tripartita had a positive effect against oxidative stress. Thus, it is expected to have potential for treatment and prevention of degenerative brain diseases such as Alzheimer's disease.

Keywords

References

  1. Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Redox Biol. 2018, 14, 450-464. https://doi.org/10.1016/j.redox.2017.10.014
  2. Shal, B.; Ding, W.; Ali, H.; Kim, Y. S.; Khan, S. Front. Pharmacol. 2018, 9, 548. https://doi.org/10.3389/fphar.2018.00548
  3. Kang, Y.; Tiziani, S.; Park, G.; Kaul, M.; Paternostro, G. Nat. Commun. 2014, 5, 3672.
  4. Wang, R.; Reddy, P.H. J. Alzheimers Dis. 2017, 57, 1041-1048. https://doi.org/10.3233/JAD-160763
  5. Mailly, F.; Marin, P.; Israel, M.; Glowinski, J.; Premont, J. J. Neurochem. 1999, 73, 1181-1188. https://doi.org/10.1046/j.1471-4159.1999.0731181.x
  6. Parfenova, H.; Basuroy, S.; Bhattacharya, S.; Tcheranova, D.; Qu, Y.; Regan, R. F.; Leffler, C. W. Am. J. Physiol. Cell Physiol. 2006, 290, C1399-C1410. https://doi.org/10.1152/ajpcell.00386.2005
  7. Amin, F. U.; Shah, S. A.; Kim, M. O. Sci. Rep. 2017, 7, 40753.
  8. Zhu, Y.; Carvey, P. M.; Ling, Z. Brain Res. 2006, 1090, 35-44. https://doi.org/10.1016/j.brainres.2006.03.063
  9. Kim, S. J.; Jung, H. J.; Hyun, D. H.; Park, E. H.; Kim, Y. M.; Lim, C. J. Biochimie 2010, 92, 927-932. https://doi.org/10.1016/j.biochi.2010.03.007
  10. Pivovarova, N. B.; Andrews, S. B. FEBS J. 2010, 277, 3622-3636. https://doi.org/10.1111/j.1742-4658.2010.07754.x
  11. Pozharitskaya, O. N.; Shikov, A. N.; Makarova, M. N.; Kosman, V. M.; Faustova, N. M.; Tesakova, S. V.; Galambosi, B. Phytomedicine 2010, 17, 463-468. https://doi.org/10.1016/j.phymed.2009.08.001
  12. Tomczykowa, M.; Tomczyk, M.; Jakoniuk, P.; Tryniszewska, E. Folia Histochem. Cytobiol. 2008, 46, 389-393.
  13. Kinney, J. W.; Bemiller, S. M.; Murtishaw, A. S.; Leisgang, A. M.; Salazar, A. M.; Lamb, B. T. Alzheimes Dement (N Y). 2018, 4, 575-590. https://doi.org/10.1016/j.trci.2018.06.014
  14. Villa, F. A.; Gerwick, L. Immunopharmacol. Immunotoxicol. 2010, 32, 228-237. https://doi.org/10.3109/08923970903296136
  15. Penugonda, S.; Mare, S.; Goldstein, G.; Banks, W. A.; Ercal, N. Brain Res. 2005, 1056, 132-138. https://doi.org/10.1016/j.brainres.2005.07.032
  16. Lefort, J. M.; Vincent, J.; Tallot, L.; Jarlier, F.; De Zeeuw, C. I.; Rondi-Reig, L.; Rochefort, C. Nat. Commun. 2019, 10, 2251.
  17. Barzegar, A.; Moosavi-Movahedi, A. A. PLoS One. 2011, 6, e26012.
  18. Tang, T. S.; Slow, E.; Lupu, V.; Stavrovskaya, I. G.; Sugimori, M.; Llinas, R.; Bezprozvanny, I. Proc. Nat. Acad. Sci. U S A 2005, 102, 2602-2607. https://doi.org/10.1073/pnas.0409402102
  19. Sribnick, E. A.; Del Re, A. M.; Ray, S. K.; Woodward, J. J.; Banik, N. L. Brain Res. 2009, 1276, 159-170. https://doi.org/10.1016/j.brainres.2009.04.022
  20. Nicholls, D. G.; Ward, M. W. Trends Neurosci. 2000, 23, 166-174. https://doi.org/10.1016/S0166-2236(99)01534-9
  21. Ward, M. W.; Rego, A. C.; Frenguelli, B. G.; Nicholls, D. G. J. Neurosci. 2000, 20, 7208-7219. https://doi.org/10.1523/JNEUROSCI.20-19-07208.2000
  22. Carlberg, I.; Mannervik, B. Methods Enzymol. 1985, 113, 484-490. https://doi.org/10.1016/S0076-6879(85)13062-4
  23. Pietta. P. G. J. Nat. Prod. 2000, 63, 1035-1042. https://doi.org/10.1021/np9904509