DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of Carbon Coated Mo6S8 using PVC

PVC를 원료로 탄소코팅한 Mo6S8의 합성 및 전기화학적 특성

  • Si-Cheol Hyun (Department of Chemical Engineering, Chungbuk National University) ;
  • Byung-Won Cho (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Byung-Ki Na (Department of Chemical Engineering, Chungbuk National University)
  • 현시철 (충북대학교 화학공학과) ;
  • 조병원 (한국과학기술연구원 에너지저장연구센터) ;
  • 나병기 (충북대학교 화학공학과)
  • Received : 2023.04.26
  • Accepted : 2023.06.13
  • Published : 2023.08.01

Abstract

Magnesium secondary batteries are attracting much attention due to their potential to replace conventionally used lithium ion batteries. Magnesium secondary battery cathode material Mo6S8 were synthesized by molten salt synthesis method and PVC as a carbon materials were added to improve electrochemical properties. Crystal structure, size and surface of the synthesized anode materials were measured through XRD and SEM. Charge-discharge profiles and rate capabilities were measured by battery test system. 2.81 wt% PVC coated sample showed the best rate capabilities of 85.8 mAh/g at 0.125 C-rate, 69.2 mAh/g at 0.5 C-rate, and 60.5 mAh/g at 1 C-rate.

마그네슘 이차전지는 기존에 사용되고 있는 리튬이온전지를 대체할 수 있는 가능성으로 인해 많은 주목을 받고 있다. 마그네슘 이차전지용 양극활물질인 Mo6S8을 MSS (Molten Salt Synthesis)법으로 합성하였고, Mo6S8의 전기화학적 특성을 향상시키기 위하여 탄소소재인 PVC (Poly Vinyl Chloride)를 첨가하여 탄화시켰다. 물질의 결정 구조와 크기, 표면 상태는 XRD (X-ray Diffraction), SEM (Scanning Electron Microscope)으로 분석하였다. 전기화학적 특성은 배터리충방전기를 이용하여 충·방전 프로파일과 출력 특성 등을 측정하였다. PVC를 2.81 wt% 첨가한 물질의 경우, 0.125 C-rate에서 85.8 mAh/g, 0.5 C-rate에서 69.2 mAh/g, 1 C-rate에서 60.5 mAh/g의 용량을 나타내어 우수한 출력특성을 보여주었다.

Keywords

References

  1. Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., Cohen, Y., Moshkovich, M. and Levi, E., "Prototype Systems for Rechargeable Magnesium Batteries," Nature, 407(6805), 724-727(2000). https://doi.org/10.1038/35037553
  2. Chusid, O., Gofer, Y., Gizbar, H., Vestfrid, Y., Levi, E., Aurbach, D. and Riech, I., "Solid-state Rechargeable Magnesium Batteries," Adv. Mater., 15(7-8), 627-629(2003). https://doi.org/10.1002/adma.200304415
  3. Cabello, M., Medina, A., Alcantara, M., Nacimiento, F., PerezVicente, C. and Tirado, J. L., "A Theoretical and Experimental Study of Hexagonal Molybdenum Trioxide as Dual-ion Electrode for Rechargeable Magnesium Battery," J. Alloys Compd., 831, 154795(2020).
  4. Attias, R., Salama, M., Hirsch, B., Gofer, Y. and Aurbach, D., "Solvent Effects on the Reversible Intercalation of MagnesiumIons into V2O5 Electrodes," ChemElectroChem, 5(22), 3514-3524 (2018). https://doi.org/10.1002/celc.201800932
  5. Kumagai, N., Komaba, S., Sakai, H. and Kumagai, N., "Preparation of Todorokite-type Manganese-based Oxide and its Application as Lithium and Magnesium Rechargeable Battery Cathode," J. Power Sources, 97-98, 515-517(2001). https://doi.org/10.1016/S0378-7753(01)00726-1
  6. Lee, H. Y., Baek, J. K., Jang, S. W., Lee, S. M., Hong, S. T., Lee, K. Y. and Kim, M. H.,"Characteristics of Carbon-coated Graphite Prepared from Mixture of Graphite and Polyvinylchloride as Anode Materials for Lithium Ion Batteries," J. Power Sources, 101(2), 206-212(2001). https://doi.org/10.1016/S0378-7753(01)00671-1
  7. Nozaki, H, Nagaoka, K., Hoshi, K., Ohta, N. and Inagaki, M., "Carbon-coated Graphite for Anode of Lithium Ion Rechargeable Batteries: Carbon Coating Conditions and Precursors," J. Power Sources, 194(1), 486-493(2009). https://doi.org/10.1016/j.jpowsour.2009.05.040
  8. Kurihara, H., Yajima, T. and Suzuki, S., "Preparation of Cathode Active Material for Rechargeable Magnesium Battery by Atmospheric Pressure Microwave Discharge Using Carbon Felt Pieces," Chem. Lett., 37, 376-377(2008). https://doi.org/10.1246/cl.2008.376
  9. Inagaki, M., "Carbon Coating for Enhancing the Functionalities of Materials," Carbon, 50(9), 3247-3266(2012). https://doi.org/10.1016/j.carbon.2011.11.045
  10. Saha, P., Datta, M. K. and Kumta, P. N., "A Convenient Approach to Mo6S8 Chevrel Phase Cathode for Rechargeable Magnesium Battery," J. Electrochem. Soc., 161(4), A593-A598(2014). https://doi.org/10.1149/2.061404jes
  11. Ryu, A., Park, M. S., Cho, W. S., Kim, J. S. and Kim, Y. J., "Size-controlled Chevrel Mo6S8 as Cathode Material for Mg Rechargeable Battery," Bull. Korean Chem. Soc., 34(10), 3033-3038(2013). https://doi.org/10.5012/bkcs.2013.34.10.3033
  12. Levi, E., Gofer, Y. and Aurbach, D., "On the Way to Rechargeable Mg Batteries : the Challenge of New Cathode Materials," Chem. Mater., 22, 860-868(2010). https://doi.org/10.1021/cm9016497
  13. Lancry, E., Levi, E., Mitelman, A., Malovany, S. and Aurbach, D., "Molten Salt Synthesis (MSS) of Cu2Mo6S8-New Way for Large-scale Production of Chevrel Phases," J. Solid State Chem., 179(6), 1879-1882(2006). https://doi.org/10.1016/j.jssc.2006.02.032
  14. Levi, M. D., Lancri, E., Levi, E., Gizbar, H., Gofer, Y. and Aurbach, D., "The Effect of the Anionic Framework of Mo6X8 Chevrel Phase (X = S, Se) on the Thermodynamics and the Kinetics of the Electrochemical Insertion of Mg2+ Ions," Solid State Ion., 176(19-22), 1695-1699(2005). https://doi.org/10.1016/j.ssi.2005.04.019
  15. Levi, M. D. and Aurbach, D., "A Comparison Between Intercalation of Li and Mg Ions into the Model Chevrel Phase Compound (MxMo6S8): Impedance Spectroscopic Studies," J. Power Sources, 146(1-2), 349-354(2005). https://doi.org/10.1016/j.jpowsour.2005.03.014
  16. Suresh, G. S., Levi, M. D. and Aurbach, D., "Effect of Chalcogen Substitution in Mixed Mo6S8-nSen (n = 0,1,2) Chevrel Phases on the Thermodynamics and Kinetics of Reversible Mg Ions Insertion," Electrochim. Acta, 53(11), 3889-3896(2008). https://doi.org/10.1016/j.electacta.2007.11.052
  17. Gershinsky, G., Haik, O., Salitra, G., Grinblat, J., Levi, E., Nessim, G. D., Zinigrad, E. and Aurbach, D., "Ultra Fast Elemental Synthesis of High Yield Copper Chevrel Phase with High Electrochemical Performance," J. Solid State Chem., 188, 50-58(2012). https://doi.org/10.1016/j.jssc.2012.01.016
  18. Lancry, E., Levi, E., Gofer, Y., Levi, M., Salitra, G. and Aurbach, D., "Leaching Chemistry and the Performance of the Mo6S8 Cathodes in Rechargeable Mg Batteries," Chem. Mater., 16, 2832-2838(2004). https://doi.org/10.1021/cm034944+
  19. Levi, E., Gershinsky, G., Aurbach, D., Isnard, O. and Ceder, G., "New Insight on the Unusually High Ionic Mobility in Chevrel Phases," Chem. Mater., 21, 1390-1399(2009). https://doi.org/10.1021/cm900033v
  20. Saha, P., Datta, M. K., Velikokhatnyi, O. I., Manivannan, A., Alman, D. and Kumta, P. N., "Rechargeable Magnesium Battery: Current Status and Key Challenges for the Future," Prog. Mater. Sci., 66, 1-86(2014). https://doi.org/10.1016/j.pmatsci.2014.04.001