DOI QR코드

DOI QR Code

Characteristics of VOx Thin Film, NiOx Thin Film, and CuIx Thin Film for Carrier Selective Contacts Solar Cells

전하선택접촉 태양전지 적용을 위한 VOx 박막, NiOx 박막, CuIx 박막의 특성 연구

  • Kiseok Jeon (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Minseob Kim (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Eunbi Lee (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Jinho Shin (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology) ;
  • Sangwoo Lim (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Chaehwan Jeong (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology)
  • 전기석 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 김민섭 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 이은비 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 신진호 (그린에너지나노연구그룹, 한국생산기술연구원) ;
  • 임상우 (화공생명공학과, 연세대학교) ;
  • 정채환 (그린에너지나노연구그룹, 한국생산기술연구원)
  • Received : 2023.03.09
  • Accepted : 2023.05.02
  • Published : 2023.06.30

Abstract

Carrier-selective contacts (CSCs) solar cells are considerably attractive on highly efficient crystalline silicon heterojunction (SHJ) solar cells due to their advantages of high thermal tolerance and the simple fabrication process. CSCs solar cells require a hole selective contact (HSC) layer that selectively collects only holes. In order to selectively collect holes, it must have a work function characteristic of 5.0 eV or more when contacted with n-type Si. The VOx, NiOx, and CuIx thin films were fabricated and analyzed respectively to confirm their potential usage as a hole-selective contact (HSC) layer. All thin films showed characteristics of band-gap engergy > 3.0 eV, work function > 5.0 eV and minority carrier lifetime > 1.5 ms.

Keywords

Acknowledgement

본 연구는 2021년도 산업통산자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원 과제인 "대면적 결정질/박막 실리콘 이종접합(HJT) 태양광 모듈핵심소재. 장비. 공정 기술 개발"(No. 20213030010240)을 통해 수행한 과제입니다

References

  1. Martin, A. G., Ewan, D. D., Jochen, H. E., Masahiro, Y., Nikos, K., Karsten, B., David, H., Michael, R., Xiaojing, H., "Solar cell efficiency tables (version 60)," Prog. Photovolt., 30(7), 687-701 (2022). https://doi.org/10.1002/pip.3595
  2. Antoine, D., Loris, B., Richard B., Gabriel, Y., H., C., Stefaan, D., W., Zicarelli, F., Christophe, B., "The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality," appl. phys. lett., 97, 183505 (2010).
  3. Antoine, D., Loris, B., Stefaan, D., W., Benjamin, S., Damien, L., Charles-Antoine, G., Zachary, C., H., Zicarelli, F., Benedicte, D., Johannes, P., S., Jakub, H., Christophe, B., "Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatment," appl. phys. lett., 99, 123506 (2011).
  4. Martin, B., Christian, R., Martin, H., Stefan, W., G., "Improving the a-Si:H(p) rear emitter contact of n-type silicon solar cells," Sol. Energy Mater. Sol. Cells, 106, 11-16 (2012). https://doi.org/10.1016/j.solmat.2012.06.036
  5. Corsin, B., Silvia, M d N., Stefaan, D., W., Xingtian, Y., Maxwell, Z., Christophe, B., Ali. J., "Silicon heterojunction solar cell with passivated hole selective MoOx contact," Appl. Phys. Lett., 104, 113902-1 (2014).
  6. Chen, J. W., Milnes, A. G., "Energy Levels in Silicon," Annu. Rev. Mater. Sci., 10, 157-228 (1980). https://doi.org/10.1146/annurev.ms.10.080180.001105
  7. Luis, G. G., Somnath, M., Anna, M.-V., Gerard, M., Pablo, O., Christobal, V., Ramon, A., Joaquim, P., "Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells," Sol. Energy Mater. Sol. Cells, 145, 109-115 (2016). https://doi.org/10.1016/j.solmat.2015.08.028
  8. Tobias, S., Ning, L., Norman, A., L., Samuel, C. H., Gebhard, J. M., Christoph, J. B., "High Fill Factor Polymer Solar Cells Incorporating a Low Temperature Solution Processed WO3 Hole Extraction Layer," Adv. Energy Mater., 2(12), 1433-1438 (2012). https://doi.org/10.1002/aenm.201200330
  9. Ifran, I., Alexander, J. T., Zhenan, B., Yongli, G., "Work function recovery of air exposed molybdenum oxide thin films," Appl. Phys. Lett., 101, 093305 (2012).
  10. Anna, W., Anders, N., Ingemar, O., "Oxidation of tungsten and tungsten carbide in dry and humid atmospheres," Int. J. of Refractory Metals & Hard Materials, 14, 345-353 (1996). https://doi.org/10.1016/S0263-4368(96)00027-3
  11. Mark, T. G., Mark, T. H. N., Zhi-Bin, W., Wing-Man, T., Zheng-Hong, L., "Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films," Int. J. Phys. Chem, 114, 19777-19781 (2010).
  12. Kiseok, J., Hongsub, J., Min-Joon, P., Sangwoo, Lim, Chaehwan, Jeong, "Characterization of the copper iodide hole-selective contact for silicon solar cell application," Thin Solid Films, 660, 613-617 (2018). https://doi.org/10.1016/j.tsf.2018.04.040
  13. Joohye, J., Dong-Lim, K., Sang-Hoon, O., Hyun-Jae, K., "Stability enhancement of organic solar cells with solution-processed nickel oxide thin films as hole transport layers," Sol. Energy Mater. Sol. Cells, 102, 103-108 (2012). https://doi.org/10.1016/j.solmat.2012.03.018
  14. Chang, Y., Max, K., Michael, L., Marius, G., "Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit," PNAS, 113(46), 12929-12933 (2016). https://doi.org/10.1073/pnas.1613643113
  15. Dimitra, K. M., Spiros, G., Maria, C., Emmanuel, S., "VO2 thin films fabricated by reduction of thermal evaporated V2O5 under N2 flow," Mater. Lett., 299, 13086 (2021).
  16. Su-kyung, K., Hae-Jun, S., Do-Hyung, K., Dong-Hyeok, C., Seung-Ju, N., Suk-Cheol, K., Han-Ki, K., "Comparison of NiOx thin film deposited by spin-coating or thermal evaporation for application as a hole transport layer of perovskite solar cells," RSC Advances, 10, 43847-43852 (2020). https://doi.org/10.1039/D0RA08776A
  17. Min, Z., Juan, L., Zichao, Z., Xuesong, W., Jun, H., Xiaopeng, Y., Zhiwen, Q., Haibo, G., Ziwu, J., Bingqiang, C., "Effect of deposition temperature on transparent conductive properties ofg-CuIfilm prepared by vacuum thermal evaporation," Phys. Status Solidi A, 212(7), 1466-1470 (2015). https://doi.org/10.1002/pssa.201532015
  18. P.M Sirimanne, M Rusop, T Shirata, T Soga, T jimbo, "Characterization of transparent conducting CuI thin films prepared by pulse laser deposition technique," Chem. Phys. Lett, 366, 485-489 (2002). https://doi.org/10.1016/S0009-2614(02)01590-7
  19. R Schlaf, H Murata, Z.H Kafafi, "Work function measurements on indium tin oxide films," J. Electron Spectrosc, Relat. Phenom. 120, 139-154 (2001). https://doi.org/10.1016/S0368-2048(01)00310-3
  20. David, C. G.-R., Bruce, S. B., Natan, S. L., "Measurement of the Band Bending and Surface Dipole at Chemically Functionalized Si(111)/Vacuum Interfaces," J. Phys. Chem. C, 117, 18031-18042 (2013). https://doi.org/10.1021/jp401585s
  21. Luis, G. G., Somnath, M., Anna, M.-V., Gerard, M., Pablo, O., Cristobal, V., Ramon, A., Joaquim, P., "Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells," Sol. Energy Mater. Sol. Cells, 145, 109-115 (2016). https://doi.org/10.1016/j.solmat.2015.08.028
  22. James, B., Andres, C., Thomas, A., Corsin, B., "Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells," Appl. Phys. Lett. 105, 232109 (2014).
  23. Adawiya, J. H., Riyad, A.-A., Hiba, M. S., Mohammed, J. H., "Photocatalytic Activity of Nickel Oxide," J. Mater. Res. Technol., 8(3), 2802-2808 (2019). https://doi.org/10.1016/j.jmrt.2019.02.018