DOI QR코드

DOI QR Code

A Study on Correlation between Busbar Electrodes of Heterojunction Technology Solar Cells and the Peel Strength

실리콘 이종접합 태양전지의 버스바 전극 두께와 접합강도의 상관관계

  • Da Yeong Jun (New & Renewable Energy Research Center, Korea Electronic Technology Institute) ;
  • Jiyeon Moon (New & Renewable Energy Research Center, Korea Electronic Technology Institute) ;
  • Godeung Park (New & Renewable Energy Research Center, Korea Electronic Technology Institute) ;
  • Zulmandakh Otgongerel (New & Renewable Energy Research Center, Korea Electronic Technology Institute) ;
  • Hyeryeong Nam (New & Renewable Energy Research Center, Korea Electronic Technology Institute) ;
  • Oryeon Kwon (New & Renewable Energy Research Center, Korea Electronic Technology Institute) ;
  • Hyunsoo Lim (New & Renewable Energy Research Center, Korea Electronic Technology Institute) ;
  • Sung Hyun Kim (New & Renewable Energy Research Center, Korea Electronic Technology Institute)
  • 전다영 (신재생에너지연구센터, 한국전자기술연구원) ;
  • 문지연 (신재생에너지연구센터, 한국전자기술연구원) ;
  • 박고등 (신재생에너지연구센터, 한국전자기술연구원) ;
  • 오트곤게렐 줄만다크 (신재생에너지연구센터, 한국전자기술연구원) ;
  • 남혜령 (신재생에너지연구센터, 한국전자기술연구원) ;
  • 권오련 (신재생에너지연구센터, 한국전자기술연구원) ;
  • 임현수 (신재생에너지연구센터, 한국전자기술연구원) ;
  • 김성현 (신재생에너지연구센터, 한국전자기술연구원)
  • Received : 2023.04.19
  • Accepted : 2023.06.08
  • Published : 2023.06.30

Abstract

In heterojunction technology (HJT) solar cells, low-temperature curing paste is used because the passivation layer deteriorates at high temperatures of 200℃ or higher. However, manufacturing HJT photovoltaic (PV) modules is challenging due to the weak peel strength between busbar electrodes and cells after soldering process. For this issue, the electrode thicknesses of the busbars of the HJT solar cell were analyzed, and the peel strengths between electrodes and wires were measured after soldering using an infrared (IR) lamp. As a result, the electrodes printed by the screen printing method had a difference in thickness due to screen mask. Also, as the thickness of the electrode increased, the peel strength of the wire increased.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 신재생에너지핵심기술개발사업(20213030010240,20223030010180)의 일환으로 수행되었습니다.

References

  1. S. Tohoda, D. Fujishima, A. Yano, A. Ogane, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, T. Kinoshita, H. Sakata, M. Taguchi, and E. Maruyama, "Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer," Journal of Non-Crystalline Solids, vol. 358, no. 17. Elsevier BV, pp. 2219-2222 (2012).  https://doi.org/10.1016/j.jnoncrysol.2012.03.025
  2. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer," IEEE Journal of Photovoltaics, vol. 4, no. 1. Institute of Electrical and Electronics Engineers (IEEE), pp. 96-99 (2014).  https://doi.org/10.1109/JPHOTOV.2013.2282737
  3. LONGI Solar, "At 26.81%, LONGi sets a new world record efficiency for silicon solar cells," https://www.longi.com/en/news/propelling-the-transformation/ (2022). 
  4. S. De Wolf and M. Kondo, "Nature of doped a-Si:H/c-Si interface recombination," Journal of Applied Physics, vol. 105, no. 10. AIP Publishing, p. 103707 (2009). 
  5. S. Braun, G. Micard, and G. Hahn, "Solar Cell Improvement by using a Multi Busbar Design as Front Electrode," Energy Procedia, vol. 27. Elsevier BV, pp. 227-233 (2012).  https://doi.org/10.1016/j.egypro.2012.07.056
  6. J. Walter, L. C. Rendler, C. Ebert, A. Kraft, and U. Eitner, "Solder joint stability study of wire-based interconnection compared to ribbon interconnection," Energy Procedia, vol. 124. Elsevier BV, pp. 515-525 (2017).  https://doi.org/10.1016/j.egypro.2017.09.288
  7. S. Braun, G. Hahn, R. Nissler, C. Ponisch, and D. Habermann, "Multi-busbar Solar Cells and Modules: High Efficiencies and Low Silver Consumption," Energy Procedia, vol. 38. Elsevier BV, pp. 334-339 (2013).  https://doi.org/10.1016/j.egypro.2013.07.286
  8. A. De Rose, D. Erath, T. Geipel, A. Kraft, and U. Eitner, "Low-Temperature Soldering for the Interconnection of Silicon Heterojunction Solar Cells," 33rd European Photovoltaic Solar Energy Conference and Exhibition; 710-714 (2017). 
  9. S. Pingel, D. Erath, T. Wenzel, S. Nold, D. Eberlein, A. De Rose, S. Tepner, J. Schube, G. Ivanov, E. Terukova, A. Moldovan, A. Lorenz, and F. Clement, "Low-temperature Ag-Paste Screening for Silicon Heterojunction Solar Cells and Modules," 37th European Photovoltaic Solar Energy Conference and Exhibition; 508-511 (2020). 
  10. A. De Rose, T. Geipel, D. Eberlein, A. Kraft, and M. Nowottnick, "Interconnection of Silicon Heterojunction Solar Cells by Infrared Soldering - Solder Joint Analysis and Temperature Study," 36th European Photovoltaic Solar Energy Conference and Exhibition; 229-234 (2019). 
  11. Y. Zemen, H.-S. Teusch, G. Kropke, S. Pingel, and S. Held, "The Impact of Busbar Surface Topology and Solar Cells Soldering Process," 27th European Photovoltaic Solar Energy Conference and Exhibition; 2030-2034 (2012). 
  12. Moyer, J., Zhang, W., Kurtz, E., Tavares, R., Buzby, D., and Kleinbach, S., "The Role of Silver Contact Paste on Reliable Connectivity Systems," 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 2624-2630 (2010). 
  13. Schmitt, P., Eberlein, D., Voos, P., Tranitz, M., and Wirth, H. "Metallographic Preparation of Solar Cell Samples for Quality Assurance and Material Evaluation," Energy Procedia. Elsevier BV. 402-408 (2011).