DOI QR코드

DOI QR Code

Five phototrophic Scrippsiella species lacking mixotrophic ability and the extended prey spectrum of Scrippsiella acuminata (Thoracosphaerales, Dinophyceae)

  • Ji Hyun You (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jin Hee Ok (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Hee Chang Kang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Sang Ah Park (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Se Hee Eom (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Hae Jin Jeong (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
  • 투고 : 2023.04.27
  • 심사 : 2023.06.06
  • 발행 : 2023.06.21

초록

Mixotrophic dinoflagellates act as primary producers, prey, and predators in marine planktonic food webs, whereas exclusively autotrophic dinoflagellates are primary producers and prey. Species of the dinoflagellate genus Scrippsiella are commonly found in marine ecosystems and sometimes cause harmful red tides. Among the 28 formally described Scrippsiella species, S. acuminata has been found to be mixotrophic and two unidentified species have been found to be mixotrophic. To determine whether the other species in this genus are similarly mixotrophic, the mixotrophic ability of S. donghaiensis SDGJ1703, S. lachrymosa SLBS1703, S. masanensis SSMS0908, S. plana SSSH1009A, and S. ramonii VGO1053 was explored using 15 potential prey items, including 2-㎛ fluorescently labeled microspheres (FLM) and heterotrophic bacteria (FLB), the cyanobacterium Synechococcus sp., and various microalgal prey species. The ability of S. acuminata to feed on FLM and FLB was also investigated. We found that S. donghaiensis, S. lachrymosa, S. masanensis, S. plana, and S. ramonii did not feed on any potential prey tested in this study, indicating a lack of mixotrophy. However, S. acuminata fed on both FLM and FLB, confirming its mixotrophic ability. These results lowered the proportion of mixotrophic species relative to the total number of tested Scrippsiella species for mixotrophy from 100% to 29-38%. Owing to its mixotrophic ability, S. acuminata occupies an ecological niche that is distinct from that of S. donghaiensis, S. lachrymosa, S. masanensis, S. plana, and S. ramonii.

키워드

과제정보

We thank editors and reviewers for their valuable comments. This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20230018) and the National Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-2021M3I6A1091272; NRF-2021R1A2C1093379) award to HJJ.

참고문헌

  1. Balech, E. 1959. Two new genera of dinoflagellates from California. Biol. Bull. 116:195-203. https://doi.org/10.2307/1539204
  2. Bhattacharya, D., Yoon, H. S. & Hackett, J. D. 2004. Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50-60. https://doi.org/10.1002/bies.10376
  3. Blossom, H. E., Baedkel, T. D., Tillmann, U. & Hansen, P. J. 2017. A search for mixotrophy and mucus trap production in Alexandrium spp. and the dynamics of mucus trap formation in Alexandrium pseudogonyaulax. Harmful Algae 64:51-62. https://doi.org/10.1016/j.hal.2017.03.004
  4. Blossom, H. E., Daugbjerg, N. & Hansen, P. J. 2012. Toxic muspecies Temcus traps: a novel mechanism that mediates prey uptake in the mixotrophic dinoflagellate Alexandrium pseudogonyaulax. Harmful Algae 17:40-53. https://doi.org/10.1016/j.hal.2012.02.010
  5. Bockstahler, K. R. & Coats, D. W. 1993. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar. Biol. 116:477-487. https://doi.org/10.1007/BF00350065
  6. Burkert, U., Hyenstrand, P., Drakare, S. & Blomqvist, P. 2001. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquat. Ecol. 35:11-17. https://doi.org/10.1023/A:1011454313607
  7. Burkholder, J. M., Glibert, P. M. & Skelton, H. M. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77-93. https://doi.org/10.1016/j.hal.2008.08.010
  8. Caron, D. A., Davis, P. G., Madin, L. P. & Sieburth, J. M. 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218:795-797. https://doi.org/10.1126/science.218.4574.795
  9. Coats, D. W., Choi, J., Jung, J. H., Kim, Y. O., Lu, Y. & Nielsen, L. T. 2020. Mixotrophic scrippsielloid dinoflagellates prey on tintinnid ciliates. Aquat. Ecosyst. Health Manag. 23:69-78. https://doi.org/10.1080/14634988.2020.1727275
  10. Daugbjerg, N., Hansen, G., Larsen, J. & Moestrup, O. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302-317. https://doi.org/10.2216/i0031-8884-39-4-302.1
  11. Esteban, G. F., Fenchel, T. & Finlay, B. J. 2010. Mixotrophy in ciliates. Protist 161:621-641. https://doi.org/10.1016/j.protis.2010.08.002
  12. Flewelling, L. J., Naar, J. P., Abbott, J. P., Baden, D. G., Barros, N. B., Bossart, G. D., Bottein, M.-Y. D., Hammond, D. G., Haubold, E. M., Heil, C. A., Henry, M. S., Jacocks, H. M., Leighfield, T. A., Pierce, R. H., Pitchford, T. D., Rommel, S. A., Scott, P. S., Steidinger, K. A., Truby, E. W., Van Dolah, F. M. & Landsberg, J. H. 2005. Red tides and marine mammal mortalities. Nature 435:755-756. https://doi.org/10.1038/nature435755a
  13. Flynn, K. J., Mitra, A., Glibert, P. M. & Burkholder, J. M. 2018. Mixotrophy in harmful algal blooms: by whom, on whom, when, why, and what next. In Glibert, P., Berdalet, E., Burford, M., Pitcher, G. & Zhou, M. (Eds.) Global Ecology and Oceanography of Harmful Algal Blooms. Springer, Cham, pp. 113-132.
  14. Franklin, D. J., Brussaard, C. P. D. & Berges, J. A. 2006. What is the role and nature of programmed cell death in phytoplankton ecology? Eur. J. Phycol. 41:1-14. https://doi.org/10.1080/09670260500505433
  15. Garate-Lizarraga, I., Band-Schmidt, C. J., Lopez-Cortes, D. J. & del Socorro Muneton-Gomez, M. 2009. Bloom of Scrippsiella trochoidea (Gonyaulacaceae) in a shrimp pond in the southwestern Gulf of California, Mexico. Mar. Pollut. Bull. 58:145-149. https://doi.org/10.1016/j.marpolbul.2008.09.016
  16. Gill, C. W. & Harris, R. P. 1987. Behavioural responses of the copepods Calanus helgolandicus and Temora longicornis to dinoflagellate diets. J. Mar. Biolog. Assoc. U. K. 67:785-801. https://doi.org/10.1017/S0025315400057039
  17. Glibert, P. M., Burkholder, J. M., Kana, T. M., Alexander, J., Skelton, H. & Shilling, C. 2009. Grazing by Karenia brevis on Synechococcus enhances its growth rate and may help to sustain blooms. Aquat. Microb. Ecol. 55:17-30. https://doi.org/10.3354/ame01279
  18. Guillard, R. R. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. https://doi.org/10.1139/m62-029
  19. Guiry, M. D. & Guiry, G. M. 2023. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org. Accessed Apr 1, 2023.
  20. Hallegraeff, G. M. 1992. Harmful algal blooms in the Australian region. Mar. Pollut. Bull. 25:186-190. https://doi.org/10.1016/0025-326X(92)90223-S
  21. Hassett, R. P. & Landry, M. R. 1990. Effects of diet and starvation on digestive enzyme activity and feeding behavior of the marine copepod Calanus pacificus. J. Plankton Res. 12:991-1010. https://doi.org/10.1093/plankt/12.5.991
  22. Hehenberger, E., Gast, R. J. & Keeling, P. J. 2019. A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. Proc. Natl. Acad. Sci. U. S. A. 116:17934-17942. https://doi.org/10.1073/pnas.1910121116
  23. Hoppenrath, M., Murray, S. A., Chomerat, N. & Horiguchi, T. 2014. Marine benthic dinoflagellates: unveiling their worldwide biodiversity. Schweizerbart Science Publishers, Stuttgart, 276 pp.
  24. Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285. https://doi.org/10.1111/j.0022-3646.1996.00279.x
  25. Jang, S. H., Lim, P., Torano, O., Neave, E. F., Seim, H. & Marchetti, A. 2022. Protistan communities within the Galapagos Archipelago with an emphasis on micrograzers. Front. Mar. Sci. 9:811979.
  26. Jeong, H. J., Jang, S. H., Moestrup, O., Kang, N. S., Lee, S. Y., Potvin, E. & Noh, J. H. 2014. Ansanella granifera gen. et sp. nov. (Dinophyceae), a new dinoflagellate from the coastal waters of Korea. Algae 29:75-99. https://doi.org/10.4490/algae.2014.29.2.075
  27. Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., Ok, J. H., You, J. H., Kim, J. H., Lee, K. H., Park, S. A., Eom, S. H., Yoo, Y. D. & Kim, K. Y. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214.
  28. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
  29. Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S., Jang, S. H., Lee, K. H., Lee, S. Y., Kim, M. O., Kim, J. H., Kwon, J. E., Kang, H. C., Kim, J. S., Yih, W., Shin, K., Jang, P. K., Ryu, J. -H., Kim, S. Y., Park, J. Y. & Kim, K. Y. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101-130. https://doi.org/10.4490/algae.2017.32.5.30
  30. Jeong, H. J., Park, J. Y., Nho, J. H., Park, M. O., Ha, J. H., Seong, K. A., Jeng, C., Seong, C. N., Lee, K. Y. & Yih, W. H. 2005a. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol. 41:131-143. https://doi.org/10.3354/ame041131
  31. Jeong, H. J., Song, J. Y., Lee, C. H. & Kim, S. T. 2004. Feeding by larvae of the mussel Mytilus galloprovincialis on redtide dinoflagellates. J. Shellfish Res. 23:185-195.
  32. Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. K., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609. https://doi.org/10.1073/pnas.1204302109
  33. Jeong, H. J., Yoo, Y. D., Kang, N. S., Rho, J. R., Seong, K. A., Park, J. W., Nam, G. S. & Yih, W. 2010a. Ecology of Gymnodinium aureolum. I. Feeding in western Korean waters. Aquat. Microb. Ecol. 59:239-255. https://doi.org/10.3354/ame01394
  34. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010b. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  35. Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005b. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150. https://doi.org/10.3354/ame040133
  36. Jeong, H. J., Yoon, J. Y., Kim, J. S., Yoo, Y. D. & Seong, K. A. 2002. Growth and grazing rates of the prostomatid ciliate Tiarina fusus on red-tide and toxic algae. Aquat. Microb. Ecol. 28:289-297. https://doi.org/10.3354/ame028289
  37. Kang, H. C., Jeong, H. J., Lim, A. S., Ok, J. H., You, J. H., Park, S. A., Lee, S. Y. & Eom, S. H. 2020. Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species. Algae 35:263-275. https://doi.org/10.4490/algae.2020.35.8.20
  38. Kim, S. J., Jeong, H. J., Kang, H. C., You, J. H. & Ok, J. H. 2019. Differential feeding by common heterotrophic protists on four Scrippsiella species of similar size. J. Phycol. 55:868-881. https://doi.org/10.1111/jpy.12864
  39. Kjelleberg, S., Hermansson, M., Marden, P. & Jones, G. W. 1987. The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu. Rev. Microbiol. 41:25-49. https://doi.org/10.1146/annurev.mi.41.100187.000325
  40. Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J. -H., Kim, K. Y., Park, K. -T. & Lee, K. 2014a. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125. https://doi.org/10.1016/j.jembe.2014.05.011
  41. Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81. https://doi.org/10.1016/j.hal.2016.09.008
  42. Lee, M. J., Jeong, H. J., Lee, K. H., Jang, S. H., Kim, J. H. & Kim, K. Y. 2015. Mixotrophy in the nematocyst-taeniocyst complex-bearing phototrophic dinoflagellate Polykrikos hartmannii. Harmful Algae 49:124-134. https://doi.org/10.1016/j.hal.2015.08.006
  43. Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014b. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152. https://doi.org/10.4490/algae.2014.29.2.137
  44. Lee, S. Y., Jeong, H. J., Kim, S. J., Lee, K. H. & Jang, S. H. 2019. Scrippsiella masanensis sp. nov. (Thoracosphaerales, Dinophyceae), a phototrophic dinoflagellate from the coastal waters of southern Korea. Phycologia 58:287-299. https://doi.org/10.1080/00318884.2019.1568794
  45. Li, A., Stoecker, D. K. & Coats, D. W. 2000. Mixotrophy in Gyrodinium galatheanum (Dinophyceae): grazing responses to light intensity and inorganic nutrients. J. Phycol. 36:33-45.
  46. Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J. & Lee, K. 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae 49:10-18. https://doi.org/10.1016/j.hal.2015.07.010
  47. Lim, A. S., Jeong, H. J. & Ok, J. H. 2019. Five Alexandrium species lacking mixotrophic ability. Algae 34:289-301. https://doi.org/10.4490/algae.2019.34.11.21
  48. Lim, A. S., Jeong, H. J., Ok, J. H. & Kim, S. J. 2018. Feeding by the harmful phototrophic dinoflagellate Takayama tasmanica (Family Kareniaceae). Harmful Algae 74:19-29. https://doi.org/10.1016/j.hal.2018.03.009
  49. Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Steidinger, K. A., Millie, D. F., Bendis, B. J., Pigg, R. J. & Tester, P. A. 2003. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol. 39:754-761. https://doi.org/10.1046/j.1529-8817.2003.02112.x
  50. Luo, Z., Wang, N., Mohamed, H. F., Liang, Y., Pei, L., Huang, S. & Gu, H. 2021. Amphidinium stirisquamtum sp. nov. (Dinophyceae), a new marine sand-dwelling dinoflagellate with a novel type of body scale. Algae 36:241-261. https://doi.org/10.4490/algae.2021.36.8.27
  51. Millette, N. C., Pierson, J. J., Aceves, A. & Stoecker, D. K. 2017. Mixotrophy in Heterocapsa rotundata: a mechanism for dominating the winter phytoplankton. Limnol. Oceanogr. 62:836-845. https://doi.org/10.1002/lno.10470
  52. Mitsui, A., Cao, S., Takahashi, A. & Arai, T. 1987. Growth synchrony and cellular parameters of the unicellular nitrogen-fixing marine cyanobacterium, Synechococcus sp. strain Miami BG 043511 under continuous illumination. Physiol. Plant. 69:1-8. https://doi.org/10.1111/j.1399-3054.1987.tb01938.x
  53. Moncheva, S., Gotsis-Skretas, O., Pagou, K. & Krastev, A. 2001. Phytoplankton blooms in Black Sea and Mediterranean coastal ecosystems subjected to anthropogenic eutrophication: similarities and differences. Estuar. Coast. Shelf Sci. 53:281-295. https://doi.org/10.1006/ecss.2001.0767
  54. Morquecho, L., Garate-Lizarraga, I. & Gu, H. 2022. Morphological and molecular characterization of the genus Coolia (Dinophyceae) from Bahia de La Paz, southwest Gulf of California. Algae 37:185-204. https://doi.org/10.4490/algae.2022.37.9.2
  55. Ok, J. H., Jeong, H. J., Kang, H. C., Park, S. A., Eom, S. H., You, J. H. & Lee, S. Y. 2021. Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates. Algae 36:263-283. https://doi.org/10.4490/algae.2021.36.11.28
  56. Ok, J. H., Jeong, H. J., Lim, A. S., Kang, H. C., You, J. H., Park, S. A. & Eom, S. H. 2023. Lack of mixotrophy in three Karenia species and the prey spectrum of Karenia mikimotoi (Gymnodiniales, Dinophyceae). Algae 38:39-55. https://doi.org/10.4490/algae.2023.38.2.28
  57. Ok, J. H., Jeong, H. J., Lim, A. S., You, J. H., Kang, H. C., Kim, S. J. & Lee, S. Y. 2019. Effects of light and temperature on the growth of Takayama helix (Dinophyceae): mixotrophy as a survival strategy against photoinhibition. J. Phycol. 55:1181-1195. https://doi.org/10.1111/jpy.12907
  58. Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl 1):S28-S40. https://doi.org/10.1016/j.hal.2013.10.004
  59. Park, M. G. & Kim, M. 2010. Prey specificity and feeding of the thecate mixotrophic dinoflagellate Fragilidium duplocampanaeforme. J. Phycol. 46:424-432. https://doi.org/10.1111/j.1529-8817.2010.00824.x
  60. Pitcher, G. C., Cembella, A. D., Joyce, L. B., Larsen, J., Probyn, T. A. & Sebastian, C. R. 2007. The dinoflagellate Alexandrium minutum in Cape Town harbour (South Africa): bloom characteristics, phylogenetic analysis and toxin composition. Harmful Algae 6:823-836. https://doi.org/10.1016/j.hal.2007.04.008
  61. Pitcher, G. C. & Joyce, L. B. 2009. Dinoflagellate cyst production on the southern Namaqua shelf of the Benguela upwelling system. J. Plankton Res. 31:865-875. https://doi.org/10.1093/plankt/fbp040
  62. Ronquist, F. & Huelsenbeck, J. P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  63. Sakamoto, S., Lim, W. A., Lu, D., Dai, X., Orlova, T. & Iwataki, M. 2021. Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan, Korea and Russia. Harmful Algae 102:101787.
  64. Sanz-Saez, I., Salazar, G., Sanchez, P., Lara, E., Royo-Llonch, M., Sa, E. L., Lucena, T., Pujalte, M. J., Vaque, D., Duarte, C. M., Gasol, J. M., Pedros-Alio, C., Sanchez, O. & Acinas, S. G. 2020. Diversity and distribution of marine heterotrophic bacteria from a large culture collection. BMC Microbiol. 20:207.
  65. Scholin, C. A., Herzog, M., Sogin, M. & Anderson, D. M. 1994. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 30:999-1011. https://doi.org/10.1111/j.0022-3646.1994.00999.x
  66. Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97. https://doi.org/10.3354/meps322085
  67. Sherr, B. F., Sherr, E. B. & Fallon, R. D. 1987. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53:958-965. https://doi.org/10.1128/aem.53.5.958-965.1987
  68. Shin, K., Jang, M. -C., Jang, P. -K., Ju, S. -J., Lee, T. -K. & Chang, M. 2003. Influence of food quality on egg production and viability of the marine planktonic copepod Acartia omorii. Prog. Oceanogr. 57:265-277. https://doi.org/10.1016/S0079-6611(03)00101-0
  69. Shumway, S. E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquac. Soc. 21:65-104. https://doi.org/10.1111/j.1749-7345.1990.tb00529.x
  70. Smalley, G. W., Coats, D. W. & Stoecker, D. K. 2003. Feeding in the mixotrophic dinoflagellate Ceratium furca is influenced by intracellular nutrient concentrations. Mar. Ecol. Prog. Ser. 262:137-151. https://doi.org/10.3354/meps262137
  71. Soehner, S., Zinssmeister, C., Kirsch, M. & Gottschling, M. 2012. Who am I-and if so, how many? Species diversity of calcareous dinophytes (Thoracosphaeraceae, Peridiniales) in the Mediterranean Sea. Org. Divers. Evol. 12:339-348. https://doi.org/10.1007/s13127-012-0109-z
  72. Stamatakis, A. 2006. RaxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  73. Stoecker, D. K., Li, A., Coats, D. W., Gustafson, D. E. & Nannen, M. K. 1997. Mixotrophy in the dinoflagellate Prorocentrum minimum. Mar. Ecol. Prog. Ser. 152:1-12. https://doi.org/10.3354/meps152001
  74. Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  75. Tezuka, Y. 1990. Bacterial regeneration of ammonium and phosphate as affected by the carbon: nitrogen: phosphorus ratio of organic substrates. Microb. Ecol. 19:227-238. https://doi.org/10.1007/BF02017167
  76. Tsikoti, C. & Genitsaris, S. 2021. Review of harmful algal blooms in the coastal Mediterranean Sea, with a focus on Greek waters. Diversity 13:396.
  77. Vadstein, O., Jensen, A., Olsen, Y. & Reinertsen, H. 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanogr. 33:489-503. https://doi.org/10.4319/lo.1988.33.4.0489
  78. Van Wambeke, F., Christaki, U., Bianchi, M., Psarra, S. & Tselepides, A. 2000. Heterotrophic bacterial production in the Cretan Sea (NE Mediterranean). Prog. Oceanogr. 46:205-216. https://doi.org/10.1016/S0079-6611(00)00019-7
  79. Vijayan, J., Ammini, P. & Nathan, V. K. 2022. Diversity pattern of marine culturable heterotrophic bacteria in a region with coexisting upwelling and mud banks in the southeastern Arabian Sea. Environ. Sci. Pollut. Res. 29:3967-3982. https://doi.org/10.1007/s11356-021-15772-8
  80. Wisecaver, J. H., Brosnahan, M. L. & Hackett, J. D. 2013. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. Genome Biol. Evol. 5:2368-2381. https://doi.org/10.1093/gbe/evt179
  81. Yokouchi, K., Suzuki, K. & Horiguchi, T. 2022. Comparative analyses of nutritional strategies among the species within the genus Paragymnodinium (Gymnodiniales, Dinophyceae). J. Phycol. 58:490-501. https://doi.org/10.1111/jpy.13253
  82. Yoo, Y. D., Jeong, H. J., Kang, N. S., Song, J. Y., Kim, K. Y., Lee, G. & Kim, J. 2010. Feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense: feeding mechanism, prey species, and effect of prey concentration. J. Eukaryot. Microbiol. 57:145-158. https://doi.org/10.1111/j.1550-7408.2009.00448.x
  83. Yoo, Y. D., Jeong, H. J., Kim, M. S., Kang, N. S., Song, J. Y., Shin, W., Kim, K. Y. & Lee, K. T. 2009. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum. J. Eukaryot. Microbiol. 56:413-420. https://doi.org/10.1111/j.1550-7408.2009.00421.x
  84. You, J. H., Jeong, H. J., Lim, A. S., Ok, J. H. & Kang, H. C. 2020. Effects of irradiance and temperature on the growth and feeding of the obligate mixotrophic dinoflagellate Gymnodinium smaydae. Mar. Biol. 167:64.
  85. You, J. H., Jeong, H. J., Ok, J. H., Kang, H. C., Park, S. A., Eom, S. H., Lee, S. Y. & Kang, N. S. 2023. Effects of temperature on the autotrophic and mixotrophic growth rates of the dinoflagellate Biecheleria cincta and its spatiotemporal distributions under current temperature and global warming conditions. Mar. Biol. 170:15.
  86. Zehr, J. P. 2011. Nitrogen fixation by marine cyanobacteria. Trends. Microbiol. 19:162-173. https://doi.org/10.1016/j.tim.2010.12.004
  87. Zhang, Q., Yu, R., Song, J., Yan, T., Wang, Y. & Zhou, M. 2011. Will harmful dinoflagellate Karenia mikimotoi grow phagotrophically? Chin. J. Oceanol. Limnol. 29:849-859. https://doi.org/10.1007/s00343-011-0513-9