Acknowledgement
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A1A01048175).
References
- Puthiyedth N, Riveros C, Berretta R, Moscato P. Identification of differentially expressed genes through integrated study of Alzheimer's disease affected brain regions. PLoS One 2016;11:e0152342.
- Bradbury R, Brodney MA. Alzheimer's disease. Topics in medicinal chemistry. Heidelberg: Springer Berlin Heidelberg;2007.
- Zhou S, Ma G, Luo H, Shan S, Xiong J, Cheng G. Identification of 5 potential predictive biomarkers for Alzheimer's disease by integrating the unified test for molecular signatures and weighted gene coexpression network analysis. J Gerontol A Biol Sci Med Sci 2023;78:653-658. https://doi.org/10.1093/gerona/glac179
- Alzheimer's Association. 2022 Alzheimer's disease facts and figures. Alzheimers Dement 2022;18:700-789. https://doi.org/10.1002/alz.12638
- Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement 2015;11:718-726. https://doi.org/10.1016/j.jalz.2015.05.016
- Golde TE. Alzheimer's disease - the journey of a healthy brain into organ failure. Mol Neurodegener 2022;17:18.
- Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med 2012;2:a006296.
- Roberts R, Knopman DS. Classification and epidemiology of MCI. Clin Geriatr Med 2013;29:753-772. https://doi.org/10.1016/j.cger.2013.07.003
- Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol 2009;8:1006-1018. https://doi.org/10.1016/S1474-4422(09)70236-4
- Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011;1:a006189.
- Lv M, Cui C, Chen P, Li Z. Identification of osteoporosis markers through bioinformatic functional analysis of serum proteome. Medicine (Baltimore) 2020;99:e22172.
- Ralston SH. Genetics of osteoporosis. Proc Nutr Soc 2007;66:158-165. https://doi.org/10.1017/S002966510700540X
- Kim SK, Yoo TK, Oh E, Kim DW. Osteoporosis risk prediction using machine learning and conventional methods. Annu Int Conf IEEE Eng Med Biol Soc 2013;2013:188-191.
- Shim JG, Kim DW, Ryu KH, Cho EA, Ahn JH, Kim JI, et al. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women. Arch Osteoporos 2020;15:169.
- Zheng Z, Zhang X, Oh BK, Kim KY. Identification of combined biomarkers for predicting the risk of osteoporosis using machine learning. Aging (Albany NY) 2022;14:4270-4280. https://doi.org/10.18632/aging.204084
- Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet 2000;25:25-29. https://doi.org/10.1038/75556
- Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 2007;8:R183.
- Zhang X, Jang MI, Zheng Z, Gao A, Lin Z, Kim KY. Prediction of chemosensitivity in multiple primary cancer patients using machine learning. Anticancer Res 2021;41:2419-2429. https://doi.org/10.21873/anticanres.15017
- McLachlan GJ. Discriminant analysis and statistical pattern recognition. Hoboken, NJ: Wiley-Interscience;2004.
- Liu YZ, Dvornyk V, Lu Y, Shen H, Lappe JM, Recker RR, et al. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J Biol Chem 2005;280:29011-29016. https://doi.org/10.1074/jbc.M501164200
- Altman NS. An introduction to kernel and nearest-neighbor nonparametric regression. Am Stat 1992;46:175-185. https://doi.org/10.1080/00031305.1992.10475879
- Vapnik V. The nature of statistical learning theory, 2nd ed. New York: Springer;2000.
- Breiman L. Random forests. Mach Learn 2001;45:5-32. https://doi.org/10.1023/A:1010933404324
- Kawaue T, Shitamukai A, Nagasaka A, Tsunekawa Y, Shinoda T, Saito K, et al. Lzts1 controls both neuronal delamination and outer radial glial-like cell generation during mammalian cerebral development. Nat Commun 2019;10:2780.
- Kropp M, Wilson SI. The expression profile of the tumor suppressor gene Lzts1 suggests a role in neuronal development. Dev Dyn 2012;241:984-994. https://doi.org/10.1002/dvdy.23777
- Willison AG, Thomas RH. The neurodevelopmental spectrum seen with CHD2 variants. Pediatr Investig 2022;6:147-148. https://doi.org/10.1002/ped4.12323
- Iwata-Otsubo A, Ritter AL, Weckselbatt B, Ryan NR, Burgess D, Conlin LK, et al. DOCK3-related neurodevelopmental syndrome: biallelic intragenic deletion of DOCK3 in a boy with developmental delay and hypotonia. Am J Med Genet A 2018;176:241-245. https://doi.org/10.1002/ajmg.a.38517
- Markunas CA, Quinn KS, Collins AL, Garrett ME, Lachiewicz AM, Sommer JL, et al. Genetic variants in SLC9A9 are associated with measures of attention-deficit/hyperactivity disorder symptoms in families. Psychiatr Genet 2010;20:73-81. https://doi.org/10.1097/YPG.0b013e3283351209
- Kirtay M, Sell J, Marx C, Haselmann H, Ceanga M, Zhou ZW, et al. ATR regulates neuronal activity by modulating presynaptic firing. Nat Commun 2021;12:4067.
- Gerschutz A, Heinsen H, Grunblatt E, Wagner AK, Bartl J, Meissner C, et al. Neuron-specific alterations in signal transduction pathways associated with Alzheimer's disease. J Alzheimers Dis 2014;40:135-142. https://doi.org/10.3233/JAD-131280
- Antonell A, Llado A, Sanchez-Valle R, Sanfeliu C, Casserras T, Rami L, et al. Altered blood gene expression of tumor-related genes (PRKCB, BECN1, and CDKN2A) in Alzheimer's disease. Mol Neurobiol 2016;53:5902-5911. https://doi.org/10.1007/s12035-015-9483-9
- Zhou Z, Chen F, Zhong S, Zhou Y, Zhang R, Kang K, et al. Molecular identification of protein kinase C beta in Alzheimer's disease. Aging (Albany NY) 2020;12:21798-21808. https://doi.org/10.18632/aging.103994
- Figueroa RL, Zeng-Treitler Q, Kandula S, Ngo LH. Predicting sample size required for classification performance. BMC Med Inform Decis Mak 2012;12:8.