DOI QR코드

DOI QR Code

Chronic Reserpine Administration for Depression Modeling in Zebrafish

레서핀 반복 투여를 통한 제브라피쉬 우울증 모델

  • Seyoung Kim (Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Changsu Han (Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine) ;
  • Young-Hoon Ko (Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Yong-Ku Kim (Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Ho-Kyoung Yoon (Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Jongha Lee (Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Suhyun Kim (Department of Biomedical Sciences, Korea University College of Medicine) ;
  • Chanhee Lee (Zebrafish Translational Medical Research Center, Korea University) ;
  • Cheolmin Shin (Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine)
  • 김세영 (고려대학교 안산병원 정신건강의학과) ;
  • 한창수 (고려대학교 구로병원 정신건강의학과) ;
  • 고영훈 (고려대학교 안산병원 정신건강의학과) ;
  • 김용구 (고려대학교 안산병원 정신건강의학과) ;
  • 윤호경 (고려대학교 안산병원 정신건강의학과) ;
  • 이종하 (고려대학교 안산병원 정신건강의학과) ;
  • 김수현 (고려대학교 의과대학 의과학과) ;
  • 이찬희 (고려대학교 안산병원 제브라피쉬 중개의학 연구소) ;
  • 신철민 (고려대학교 안산병원 정신건강의학과)
  • Received : 2022.11.14
  • Accepted : 2022.11.18
  • Published : 2023.04.30

Abstract

Objectives This study aims to develop valid experimental models for depression through chronic reserpine exposure to zebrafish (Danio rerio). Methods The effect of chronic reserpine on zebrafish behavior in the novel tank was examined. Changes of gene expression on telencephalon were also investigated. Results Chronic reserpine (40 mg/L, 7 days) induced overt behavioral effects, but markedly reduced activity, resembling motor retardation in depression. In telencephalon of zebrafish, gene expression associated with monoamine oxidase and norepinephrine transporter was decreased. Expression of serotonin transporter gene was increased. Conclusions Our results show that the pharmacological model of depression in zebrafish can induce not only behavioral changes, but also monoamine changes in the homology of human mood regulation centers.

Keywords

Acknowledgement

This research was supported by a Korea University grant and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number: 2019R1I1A1A01056594).

References

  1. World Health Organization. Depression and other common mental disorders: global health estimates. Geneva: World Health Organization;2017. 
  2. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators; Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1211-1259.  https://doi.org/10.1016/S0140-6736(17)32154-2
  3. Elhwuegi AS. Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:435-451.  https://doi.org/10.1016/j.pnpbp.2003.11.018
  4. Kalueff AV, Wheaton M, Murphy DL. What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res 2007;179:1-18.  https://doi.org/10.1016/j.bbr.2007.01.023
  5. Ma L, Demin KA, Kolesnikova TO, Khatsko SL, Zhu X, Yuan X, et al. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discov 2017;12:995-1009.  https://doi.org/10.1080/17460441.2017.1362385
  6. Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014;35:63-75.  https://doi.org/10.1016/j.tips.2013.12.002
  7. Fonseka TM, Wen XY, Foster JA, Kennedy SH. Zebrafish models of major depressive disorders. J Neurosci Res 2016;94:3-14.  https://doi.org/10.1002/jnr.23639
  8. Shamon SD, Perez MI. Blood pressure-lowering efficacy of reserpine for primary hypertension. Cochrane Database Syst Rev 2016;12:CD007655. 
  9. Strawbridge R, Javed RR, Cave J, Jauhar S, Young AH. The effects of reserpine on depression: a systematic review. J Psychopharmacol 2023;37:248-260.  https://doi.org/10.1177/02698811221115762
  10. Ikram H, Haleem DJ. Repeated treatment with reserpine as a progressive animal model of depression. Pak J Pharm Sci 2017;30:897-902. 
  11. Ruiz P, Calliari A, Pautassi RM. Reserpine-induced depression is associated in female, but not in male, adolescent rats with heightened, fluoxetine-sensitive, ethanol consumption. Behav Brain Res 2018;348:160-170.  https://doi.org/10.1016/j.bbr.2018.04.011
  12. Kyzar E, Stewart AM, Landsman S, Collins C, Gebhardt M, Robinson K, et al. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res 2013;1527:108-116.  https://doi.org/10.1016/j.brainres.2013.06.033
  13. Bernstein AI, Stout KA, Miller GW. The vesicular monoamine transporter 2: an underexplored pharmacological target. Neurochem Int 2014;73:89-97.  https://doi.org/10.1016/j.neuint.2013.12.003
  14. Kyzar E, Roth A, Green J, Gaikwad S, Monnig L, Kalueff A. Developing zebrafish models of depression?: effects of reserpine on zebrafish behavior and physiology. FASEB J 2012;26:1045.12. 
  15. Antkiewicz-Michaluk L, Wasik A, Mozdzen E, Romanska I, Michaluk J. Antidepressant-like effect of tetrahydroisoquinoline amines in the animal model of depressive disorder induced by repeated administration of a low dose of reserpine: behavioral and neurochemical studies in the rat. Neurotox Res 2014;26:85-98.  https://doi.org/10.1007/s12640-013-9454-8
  16. Bencan Z, Sledge D, Levin ED. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 2009;94:75-80.  https://doi.org/10.1016/j.pbb.2009.07.009
  17. Blaser RE, Rosemberg DB. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS One 2012;7:e36931. 
  18. Tang YQ, Li ZR, Zhang SZ, Mi P, Chen DY, Feng XZ. Venlafaxine plus melatonin ameliorate reserpine-induced depression-like behavior in zebrafish. Neurotoxicol Teratol 2019;76:106835. 
  19. Piato AL, Capiotti KM, Tamborski AR, Oses JP, Barcellos LJ, Bogo MR, et al. Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:561-567.  https://doi.org/10.1016/j.pnpbp.2010.12.018
  20. Guillot TS, Miller GW. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 2009;39:149-170.  https://doi.org/10.1007/s12035-009-8059-y
  21. Duncan J, Johnson S, Ou XM. Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov Ther 2012;6:112-122.  https://doi.org/10.5582/ddt.2012.v6.3.112
  22. Stefanovic B, Spasojevic N, Jovanovic P, Jasnic N, Djordjevic J, Dronjak S. Melatonin mediated antidepressant-like effect in the hippocampus of chronic stress-induced depression rats: regulating vesicular monoamine transporter 2 and monoamine oxidase A levels. Eur Neuropsychopharmacol 2016;26:1629-1637.  https://doi.org/10.1016/j.euroneuro.2016.07.005
  23. de Freitas CM, Busanello A, Schaffer LF, Peroza LR, Krum BN, Leal CQ, et al. Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology (Berl) 2016;233:457-467.  https://doi.org/10.1007/s00213-015-4118-4
  24. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 1996;36:83-106.  https://doi.org/10.1146/annurev.pa.36.040196.000503
  25. Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry 2010;15:574-588.  https://doi.org/10.1038/mp.2009.141
  26. Suda T, Tomori N, Yajima F, Sumitomo T, Nakagami Y, Ushiyama T, et al. Time course study on the effect of reserpine on hypothalamic immunoreactive CRF levels in rats. Brain Res 1987;405:247-252.  https://doi.org/10.1016/0006-8993(87)90294-0
  27. Chaouloff F. Serotonin, stress and corticoids. J Psychopharmacol 2000;14:139-151.  https://doi.org/10.1177/026988110001400203
  28. Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol 2015;25:R1051-R1056.  https://doi.org/10.1016/j.cub.2015.09.039
  29. Filipenko ML, Beilina AG, Alekseyenko OV, Dolgov VV, Kudryavtseva NN. Repeated experience of social defeats increases serotonin transporter and monoamine oxidase A mRNA levels in raphe nuclei of male mice. Neurosci Lett 2002;321:25-28.  https://doi.org/10.1016/S0304-3940(01)02495-8
  30. Morozova AY, Zubkov EA, Koshkin FA, Storozheva ZI, Chekhonin VP. Expression of genes encoding serotonin receptors and SERT in various brain structures of stressed rats after chronic exposure to ultrasound. Bull Exp Biol Med 2014;156:317-319.  https://doi.org/10.1007/s10517-014-2338-y
  31. Bravo L, Torres-Sanchez S, Alba-Delgado C, Mico JA, Berrocoso E. Pain exacerbates chronic mild stress-induced changes in noradrenergic transmission in rats. Eur Neuropsychopharmacol 2014;24:996-1003.  https://doi.org/10.1016/j.euroneuro.2014.01.011
  32. Bravo L, Alba-Delgado C, Torres-Sanchez S, Mico JA, Neto FL, Berrocoso E. Social stress exacerbates the aversion to painful experiences in rats exposed to chronic pain: the role of the locus coeruleus. Pain 2013;154:2014-2023.  https://doi.org/10.1016/j.pain.2013.06.021
  33. Ghisleni G, Capiotti KM, Da Silva RS, Oses JP, Piato AL, Soares V, et al. The role of CRH in behavioral responses to acute restraint stress in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2012;36:176-182. https://doi.org/10.1016/j.pnpbp.2011.08.016