Acknowledgement
This research was supported by a Korea University grant and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number: 2019R1I1A1A01056594).
References
- World Health Organization. Depression and other common mental disorders: global health estimates. Geneva: World Health Organization;2017.
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators; Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1211-1259. https://doi.org/10.1016/S0140-6736(17)32154-2
- Elhwuegi AS. Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:435-451. https://doi.org/10.1016/j.pnpbp.2003.11.018
- Kalueff AV, Wheaton M, Murphy DL. What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav Brain Res 2007;179:1-18. https://doi.org/10.1016/j.bbr.2007.01.023
- Ma L, Demin KA, Kolesnikova TO, Khatsko SL, Zhu X, Yuan X, et al. Animal inflammation-based models of depression and their application to drug discovery. Expert Opin Drug Discov 2017;12:995-1009. https://doi.org/10.1080/17460441.2017.1362385
- Kalueff AV, Stewart AM, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 2014;35:63-75. https://doi.org/10.1016/j.tips.2013.12.002
- Fonseka TM, Wen XY, Foster JA, Kennedy SH. Zebrafish models of major depressive disorders. J Neurosci Res 2016;94:3-14. https://doi.org/10.1002/jnr.23639
- Shamon SD, Perez MI. Blood pressure-lowering efficacy of reserpine for primary hypertension. Cochrane Database Syst Rev 2016;12:CD007655.
- Strawbridge R, Javed RR, Cave J, Jauhar S, Young AH. The effects of reserpine on depression: a systematic review. J Psychopharmacol 2023;37:248-260. https://doi.org/10.1177/02698811221115762
- Ikram H, Haleem DJ. Repeated treatment with reserpine as a progressive animal model of depression. Pak J Pharm Sci 2017;30:897-902.
- Ruiz P, Calliari A, Pautassi RM. Reserpine-induced depression is associated in female, but not in male, adolescent rats with heightened, fluoxetine-sensitive, ethanol consumption. Behav Brain Res 2018;348:160-170. https://doi.org/10.1016/j.bbr.2018.04.011
- Kyzar E, Stewart AM, Landsman S, Collins C, Gebhardt M, Robinson K, et al. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res 2013;1527:108-116. https://doi.org/10.1016/j.brainres.2013.06.033
- Bernstein AI, Stout KA, Miller GW. The vesicular monoamine transporter 2: an underexplored pharmacological target. Neurochem Int 2014;73:89-97. https://doi.org/10.1016/j.neuint.2013.12.003
- Kyzar E, Roth A, Green J, Gaikwad S, Monnig L, Kalueff A. Developing zebrafish models of depression?: effects of reserpine on zebrafish behavior and physiology. FASEB J 2012;26:1045.12.
- Antkiewicz-Michaluk L, Wasik A, Mozdzen E, Romanska I, Michaluk J. Antidepressant-like effect of tetrahydroisoquinoline amines in the animal model of depressive disorder induced by repeated administration of a low dose of reserpine: behavioral and neurochemical studies in the rat. Neurotox Res 2014;26:85-98. https://doi.org/10.1007/s12640-013-9454-8
- Bencan Z, Sledge D, Levin ED. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 2009;94:75-80. https://doi.org/10.1016/j.pbb.2009.07.009
- Blaser RE, Rosemberg DB. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS One 2012;7:e36931.
- Tang YQ, Li ZR, Zhang SZ, Mi P, Chen DY, Feng XZ. Venlafaxine plus melatonin ameliorate reserpine-induced depression-like behavior in zebrafish. Neurotoxicol Teratol 2019;76:106835.
- Piato AL, Capiotti KM, Tamborski AR, Oses JP, Barcellos LJ, Bogo MR, et al. Unpredictable chronic stress model in zebrafish (Danio rerio): behavioral and physiological responses. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:561-567. https://doi.org/10.1016/j.pnpbp.2010.12.018
- Guillot TS, Miller GW. Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 2009;39:149-170. https://doi.org/10.1007/s12035-009-8059-y
- Duncan J, Johnson S, Ou XM. Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov Ther 2012;6:112-122. https://doi.org/10.5582/ddt.2012.v6.3.112
- Stefanovic B, Spasojevic N, Jovanovic P, Jasnic N, Djordjevic J, Dronjak S. Melatonin mediated antidepressant-like effect in the hippocampus of chronic stress-induced depression rats: regulating vesicular monoamine transporter 2 and monoamine oxidase A levels. Eur Neuropsychopharmacol 2016;26:1629-1637. https://doi.org/10.1016/j.euroneuro.2016.07.005
- de Freitas CM, Busanello A, Schaffer LF, Peroza LR, Krum BN, Leal CQ, et al. Behavioral and neurochemical effects induced by reserpine in mice. Psychopharmacology (Berl) 2016;233:457-467. https://doi.org/10.1007/s00213-015-4118-4
- Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 1996;36:83-106. https://doi.org/10.1146/annurev.pa.36.040196.000503
- Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry 2010;15:574-588. https://doi.org/10.1038/mp.2009.141
- Suda T, Tomori N, Yajima F, Sumitomo T, Nakagami Y, Ushiyama T, et al. Time course study on the effect of reserpine on hypothalamic immunoreactive CRF levels in rats. Brain Res 1987;405:247-252. https://doi.org/10.1016/0006-8993(87)90294-0
- Chaouloff F. Serotonin, stress and corticoids. J Psychopharmacol 2000;14:139-151. https://doi.org/10.1177/026988110001400203
- Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol 2015;25:R1051-R1056. https://doi.org/10.1016/j.cub.2015.09.039
- Filipenko ML, Beilina AG, Alekseyenko OV, Dolgov VV, Kudryavtseva NN. Repeated experience of social defeats increases serotonin transporter and monoamine oxidase A mRNA levels in raphe nuclei of male mice. Neurosci Lett 2002;321:25-28. https://doi.org/10.1016/S0304-3940(01)02495-8
- Morozova AY, Zubkov EA, Koshkin FA, Storozheva ZI, Chekhonin VP. Expression of genes encoding serotonin receptors and SERT in various brain structures of stressed rats after chronic exposure to ultrasound. Bull Exp Biol Med 2014;156:317-319. https://doi.org/10.1007/s10517-014-2338-y
- Bravo L, Torres-Sanchez S, Alba-Delgado C, Mico JA, Berrocoso E. Pain exacerbates chronic mild stress-induced changes in noradrenergic transmission in rats. Eur Neuropsychopharmacol 2014;24:996-1003. https://doi.org/10.1016/j.euroneuro.2014.01.011
- Bravo L, Alba-Delgado C, Torres-Sanchez S, Mico JA, Neto FL, Berrocoso E. Social stress exacerbates the aversion to painful experiences in rats exposed to chronic pain: the role of the locus coeruleus. Pain 2013;154:2014-2023. https://doi.org/10.1016/j.pain.2013.06.021
- Ghisleni G, Capiotti KM, Da Silva RS, Oses JP, Piato AL, Soares V, et al. The role of CRH in behavioral responses to acute restraint stress in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2012;36:176-182. https://doi.org/10.1016/j.pnpbp.2011.08.016