References
- Auad, G., Castaldo, P. and Almazan, J.L. (2022), "Seismic reliability of structures equipped with LIR-DCFP bearings in terms of superstructure ductility and isolator displacement", Earthq. Eng. Struct. Dyn., 51(13), 3171-3214. https://doi.org/10.1002/eqe.3719.
- Barghian, M. and Shahabi, A.B. (2007), "A new approach to pendulum base isolation", Struct. Control Health Monit., 14, 177-185. https://doi.org/10.1002/stc.115.
- Castaldo, P., Palazzo, B., Alfano, G. and Palumbo, M.F. (2018), "Seismic reliability-based ductility demand for hardening and softening structures isolated by friction pendulum bearings", Struct. Control Health Monit., 25(11), e2256. https://doi.org/10.1002/stc.2256.
- Castaldo, P., Amendola, G., Giordano, L. and Miceli, E. (2022), "Seismic reliability assessment of isolated multi-span continuous deck bridges", Ing. Sism., 39(3), 26-51.
- Chen, H., Sun, Z. and Sun, L. (2011), "Active mass damper control for cable stayed bridge under construction: An experimental study", Struct. Eng. Mech., 38(2), 141-156. https://doi.org/10.12989/sem.2011.38.2.141.
- Cirelli, M., Gregori, J., Valentini, P.P. and Pennestri, E. (2019), "A design chart approach for the tuning of parallel and trapezoidal bifilar centrifugal pendulum", Mech. Mach. Theory, 140, 711-729. https://doi.org/10.1016/j.mechmachtheory.2019.06.030.
- Deringol, A.H. and Guneyisi, E.M. (2019), "Effect of friction pendulum bearing properties on behaviour of buildings subjected to seismic loads", Soil Dyn. Earthq. Eng., 125, 105746. https://doi.org/10.1016/j.soildyn.2019.105746.
- Gino, D., Miceli, E. and Castaldo, P. (2023), "Seismic reliability analysis of isolated deck bridges using friction pendulum devices", Proc. Struct. Integr., 44, 1435-1442. https://doi.org/10.1016/j.prostr.2023.01.184.
- Islam, S., Jumaat, M.J. and Zamin, M. (2011), "Seismic isolation in buildings to be a practical reality: Behavior of structure and installation technique", J. Eng. Tech. Res., 3(4), 99-117. https://doi.org/10.5897/JETR.9000075.
- Izumi, M. (1988), "State-of-the-art report: Base isolation and passive seismic response control", Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo, Japan, August.
- Kim, Y., Shahriyer, H. and Hu, J. (2022), "Seismic performance evaluation according to HSS and CFST columns of 3D frame buildings with rubber friction bearing (RFB)", Mater., 15(4), 1281. https://doi.org/10.3390/ma15041281.
- Kelly, J.M. (1986), "A seismic base isolation: Review and bibliography", Soil Dyn. Earthq. Eng., 5(4), 202-216. https://doi.org/10.1016/0267-7261(86)90006-0.
- Lin, A.N. and Shenton, III H.W. (1992), "Seismic performance of fixed base and base isolated steel frames", ASCE, J. Eng. Mech., 118(5), 921-941. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:5(921).
- Liu, K., Chen, L.X. and Cai, G.P. (2011), "Active control of a nonlinear and hysteretic building structure with time delay", Struct. Eng. Mech., 40(3), 431-451. https://doi.org/10.12989/sem.2011.40.3.431.
- Luco, J.E. (2014), "Effects of soil-structure interaction on seismic base isolation", Soil Dyn. Earthq. Eng., 66, 167-177. https://doi.org/10.1016/j.soildyn.2014.05.007.
- Lupasteanu, V., Soveja, L., Lupasteanu, R. and Chingalata, C. (2019), "Installation of a base isolation system made of friction pendulum sliding isolators in a historic masonry orthodox church", Eng. Struct., 188, 369-381. https://doi.org/10.1016/j.engstruct.2019.03.040.
- Monfared, H., Shirvani, A. and Nwaubani, S. (2013), "An investigation into the seismic base isolation from practical perspective", Int. J. Civil Struct. Eng., 3(3), 451-463. https://doi:10.6088/ijcser.201203013042.
- Naeim, F. and Kelly, J.M. (1999), Design of Seismic Isolated Structures from Theory to Practice, John Wiley & Sons, Hoboken, NJ, USA.
- Nanda, N. and Nath, Y. (2012), "Active control of a nonlinear and hysteretic building structure with time delay", Struct. Eng. Mech., 42(2), 211-228. https://doi.org/10.12989/sem.2012.42.2.211.
- Quaglini, V., Gandelli, E., Dubini, P. and Limongelli, M.P. (2017), "Total displacement of curved surface sliders under nonseismic and seismic actions: A parametric study", Struct. Control Health Monit., 24(12), e2031. https://doi.org/10.1002/stc.2031.
- Shah, V.M. and Soni, D.P. (2017), "Response of the double concave friction pendulum system under triaxial ground excitations", Proc. Eng., 173, 1870-1877. https://doi.org/10.1016/j.proeng.2016.12.240.
- Sheikh, M.N., Xiong, J. and Li, W.H. (2012), "Reduction of seismic pounding effects of base-isolated RC highway bridges using MR damper", Struct. Eng. Mech., 41(6), 791-803. https://doi.org/10.12989/sem.2012.41.6.791.
- Shenton, III H.W. and Lin, A.N. (1993), "Relative performance of fixed based and base isolated concrete frame", ASCE, Struct. Eng., 119(10), 2952-2968. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:10(295).
- Shrimali, M.K., Bharti, S.D. and Dumne, S.M. (2015), "Seismic response analysis of coupled building involving MR damper and elastomeric base isolation", Ain Shams Eng. J., 6, 457-470. https://doi.org/10.1016/j.asej.2014.12.007.
- Su, L., Ahmadi, G. and Tadjbakhsh, I.G. (1991), "Performance of sliding resilient-friction base-isolation system", ASCE, J. Struct. Eng., 117(1), 165-181. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(165).
- Thomas, T. and Mathai, A. (2016), "Study of base isolation using friction pendulum bearing system", J. Mech. Civil Eng., 2006, 19-23.
- Zhong, C. and Christopoulos, C. (2022), "Shear-controlling rocking-isolation podium system for enhanced resilience of high-rise buildings", Earthq. Eng. Struct. Dyn., 51(6), 1363-1382. https://doi.org/10.1002/eqe.3619.