DOI QR코드

DOI QR Code

Verification of Anti-Inflammatory Effects of Strawberry (Fragaria x ananassa var. 'Seolhyang') Stems on Macrophages Stimulated by Lipopolysaccharides

LPS로 자극된 대식세포에 대한 딸기 줄기의 항염증 효능 검증

  • Dan-Hee Yoo (College of Fusion and Convergence, Seowon University) ;
  • In-Chul Lee (Department of Bio-Cosmetic Science, Seowon University)
  • 유단희 (서원대학교융복합대학) ;
  • 이인철 (서원대학교바이오코스메틱학과)
  • Received : 2023.06.16
  • Accepted : 2023.08.30
  • Published : 2023.09.28

Abstract

In strawberry farming, most parts of strawberry stems but the fruit have been dumped. Therefore, this study attempted to investigate the antioxidant and anti-inflammatory effects of strawberry stems which are thrown away after farming. For this, strawberry stem extracts were obtained, using hot water and 70% ethanol. First, total polyphenol contents of the hot water and ethanol extract were checked (265.4 ± 0.12 mg TAE/100 g, 503.88 ± 0.2 mg TAE/100 g). For analysis of antioxidant activities, electron donating ability (EDA) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity were measured. Both extracts increased in a dose-dependent fashion, and similar effects with vitamin C (control group) were confirmed. In terms of cell viability of the hot water and ethanol extracts of strawberry stems, 'RAW 264.7' was 99% or higher at 500 ㎍/ml. In addition, cell experiments were conducted at 50, 100 and 500 ㎍/ml where cell viability is above 99%. In terms of inhibition of the inflammatory mediator 'nitric oxide (NO)', the hot water and ethanol extracts of strawberry stems were 37.9% and 38.8% respectively, confirming the inhibition of NO production. To check anti-inflammatory activities, protein and mRNA expressions of 'iNOS' and 'COX-2' were measured, using RAW 264.7. Compared to the LPS group, the protein expression of the inflammatory mediators was inhibited in the hot water and ethanol extract-treated groups. The above results confirmed that the hot water and ethanol extracts of strawberry stems are valuable as natural substances with antioxidant and anti-inflammatory activities.

딸기는 과육을 제외한 부위는 폐기될 수밖에 없어 활용도가 떨어지는 실정이다. 이에 따라 본 연구에서는 부산물로서 폐기되는 딸기 줄기를 활용하고자 이를 이용하여 항산화 및 항염증 효과를 검증하고자 하였다. 용매별로 추출하여 딸기 줄기의 열수 및 70% 에탄올을 이용하여 추출 후 실험을 진행하였다. 먼저 딸기 줄기의 열수 및 에탄올 추출물의 총 폴리페놀 함량을 확인하였으며, 그 결과 265.4 ± 0.12 mg TAE/100 g, 503.88 ± 0.2 mg TAE/100 g의 폴리페놀 함량을 확인하였다. 항산화 활성을 측정하기 위해 전자공여능 및 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) 라디칼 소거능을 이용하여 항산화력을 측정하였다. 두 추출물 모두 농도 의존적으로 증가함을 확인할 수 있었으며, 고농도에서는 항산화력이 우수함을 확인하였다. 이후 항염증 효능을 확인하기 위해 대식세포를 이용해 실험을 진행하였다. 먼저 시료의 세포 독성을 확인하고 농도를 설정하고자 하였다. 세포 생존율을 측정한 결과, 대식세포인 RAW 264.7에서 딸기 줄기 열수 및 에탄올 추출물 둘다 500 ㎍/ml 농도에서 99% 이상의 세포 생존율을 확인하였다. 이후 세포 생존율이 99% 이상인 농도구간(50, 100, 500 ㎍/ml)을 설정하여 이하의 실험을 진행하였다. 염증성 매개 물질로 알려진 nitric oxide (NO)의 생성 억제 효과를 확인한 결과, 딸기 줄기의 열수 추출물은 37.9%의 억제 효과가 나타났고, 에탄올 추출물은 38.8%의 억제 효과를 확인하여 딸기 줄기 추출물의 NO 생성을 저해하는 효과를 확인하였다. 항염증 활성을 확인하기 위해 RAW 264.7 세포를 이용하여 염증 매개 인자인 iNOS, COX-2의 단백질 및 mRNA 발현량을 측정하였다. 그 결과, 단백질 및 mRNA의 발현에서 LPS 단독 처리군에 비해 딸기 줄기의 열수 및 에탄올 추출물을 처리하였을 때 iNOS와 COX-2의 단백질 발현량이 억제됨을 확인할 수 있었다. 본 연구 결과들을 토대로 딸기 줄기의 열수 및 에탄올 추출물이 항산화 및 항염증 활성이 우수함을 확인하여 천연 소재로서 활용하여 사용할 수 있을 것으로 사료된다.

Keywords

References

  1. Giampieri F, Alvarez-Suarez JM, Tulipani S, GonzalesParamas AM, Santos-Buelga C, Bompadre S, et al. 2012. Photoprotective potential of strawberry (Fragaria×ananassa) extract against UV-A irradiation damage on human fibroblasts. J. Agric. Food Chem. 60: 2322-2237. 
  2. Choi HG, Kang NJ, Moon BY, Kwon JK, Rho IR, Park KS, et al. 2013. Changes in fruit quality and antioxidant activity depending on ripening levels, storage temperature, and storage periods in strawberry cultivars. Korean J. Hort. Sci. Technol. 31: 194-202. 
  3. Kim SK, Bae RN, Hwang HS, Kim MJ, Sung HR, Chun CH. 2010. Comparison of bioactive compounds contents in different fruit tissues of june-bearing strawberry cultivars. Korean J. Hort. Sci. Technol. 28: 948-953. 
  4. Meyers KJ, Watkins CB, Pritts MP, Liu RH. 2003. Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem. 51: 6887-6892. 
  5. Mass JL, Galletta GJ, Stoner GD. 1991. Ellagic acid, and anticarcinogen in fruits, especially in strawberries: a review. Hortscience 26: 10-14. 
  6. Mukhtar H, Das M, Bickers DR. 1986. Inhibition of 3-methylcholanthrene-induced skin tumorigenicity in BALB/c mice by chronic oral feeding of trace amounts of ellagic acid in drinking water. Cancer Res. 46: 2262-2265. 
  7. Shimogaki H, Tanaka Y, Tamai H, Masuda M. 2000. In vitro and in vivo evaluation of ellagic acid on melanogenesis inhibition. Int. J. Cosmet. Sci. 22: 291-303. 
  8. Youn SJ, Cho JG, Choi UK, Kwoen DJ. 2007. Change of biological activity of strawberry by frozen storage and extraction method. J. Life Sci. 17: 1734-1738. 
  9. Oh BY, Lee YS, Nam SH, Lee SK, Kwon SB, An IS, et al. 2013. Effects of strawberry plant body extracts on whitening and anti-wrinkle. Korean J. Aesthet. Cosmetol. 11: 969-974. 
  10. Jeon HJ, Kwon HJ. 2014. Antioxidant effects and functional evaluation of Gynura procumbens extracts as a collabroation materal for cosmetics and functional food. Korean J. Aesthet. Cosmetol. 12: 499-507. 
  11. Jung HK, Kang BM, Jang JH, Ahn BK, Yeo JH, Jung WS, et al. 2014. Inhibitory effect of Alopecurus aequalis Sobol ethanol extracts on LPS-induced inflammatory response in RAW264.7 cells. Korean J. Med. Crop Sci. 22: 98-104. 
  12. Nathan C, Aihao D. 2010. Nonresolving inflammation. Cell 140: 871-882. 
  13. Kim JH, Song HN, Ko HC, Lee JY, Jang MG, Kim SJ. 2017. Antioxidant and anti-inflammatory properties of Clerodendrum trichotomum leaf extracts. J. Life Sci. 27: 640-645. 
  14. Song CY, Oh TW, Kim HH, Lee YB, Kim JO, Kim GS, et al. 2022. Anti-inflammatory efficacy of HK shiitake mushroom mycelium in LPS-treated RAW 264.7 cells through down-regulation of NF-κB activation. J. Life Sci. 32: 491-500. 
  15. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299: 152-178. 
  16. Blois MS. 1958. Antioxidant determinations by the use or a stable free radical. Nature 181: 1199-1200. 
  17. Roberta R, Nicoletta P, Anna P, Ananth P, Min Y, Catherine RE. 1999. Antioxidant acitivity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 26: 1231-1237. 
  18. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936. 
  19. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126: 131-138. 
  20. Oh YJ, Cho HJ, Woo HS, Byeon JG, Kim YS, Kim DW. 2020. Physiological activity of methanol extracts from Sambucus sieboldiana var. miquelii (Nakai) Hara. J. Life Sci. 30: 965-972. 
  21. Yoon JW, Kim HN, Ha TJ, Park SH, Lee SM, Ahn SI, et al. 2016. Antioxidant activity of greek-style yogurt with stevia leaf extracts. J. Dairy Sci. Biotechnol. 34: 263-270. 
  22. Kim MJ, Park EJ. 2011. Feature analysis of different in vitro antioxidant capacity assays and their application to fruit and vegetable samples. J. Kor. Soc. Food Sci. Nut. 40: 1053-1062. 
  23. Meir S, Kanner J, Akiri B, Philosoph-Hadas S. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agric. Food Chem. 43: 1813-1819. 
  24. Kim YE, Yang JW, Lee CH, Kwon EK. 2009. ABTS radical scavenging and anti-tumor effects of Tricholoma matsutake sing. (pine mushroom). J. Korean Soc. Food Sci. Nutr. 38: 555-560. 
  25. Yoon WJ, Lee JA, Kim KN, Kim JY, Park SY. 2007. In vitro antiinflammatory activity of the Artemisia fukudo extracts in murine macrophage RAW 264.7 cells. Korean J. Food Sci. Technol. 39: 464-469.