DOI QR코드

DOI QR Code

PRERESOLVING SUBCATEGORIES IN EXTRIANGULATED CATEGORIES

  • Songsong Liu (School of Mathematical Sciences Nanjing Normal University) ;
  • Jiaqun Wei (School of Mathematical Sciences Nanjing Normal University)
  • 투고 : 2022.09.24
  • 심사 : 2022.12.30
  • 발행 : 2023.07.01

초록

In this paper, we introduce and study preresolving subcategories in an extriangulated category ${\mathfrak{C}}$. Let ${\mathcal{Y}}$ be a ${\mathcal{Z}}$-preresolving subcategory of ${\mathfrak{C}}$ admitting a ${\mathcal{Z}}$-proper ξ-generator ${\mathcal{X}}$. We give the characterization of ${\mathcal{Z}}$-proper ${\mathcal{Y}}$-resolution dimension of an object in ${\mathfrak{C}}$. Next, for an object A in ${\mathfrak{C}}$, if the ${\mathcal{Z}}$-proper ${\mathcal{Y}}$-resolution dimension of A is at most n, then all "n-${\mathcal{X}}$-syzygies" of A are objects in ${\mathcal{Y}}$. Finally, we prove that A has a ${\mathcal{Z}}$-proper ${\mathcal{X}}$-resolution if and only if A has a ${\mathcal{Z}}$-proper ${\mathcal{Y}}$-resolution. As an application, we introduce (${\mathcal{X}},\;{\mathcal{Z}}$)-Gorenstein subcategory ${\mathcal{G}{\mathcal{X}}_{\mathcal{Z}}({\xi})$ of ${\mathfrak{C}}$ and prove that ${\mathcal{G}{\mathcal{X}}_{\mathcal{Z}}({\xi})$ is both ${\mathcal{Z}}$-resolving subcategory and ${\mathcal{Z}}$-coresolving subcategory of ${\mathfrak{C}}$.

키워드

과제정보

This work was supported by the National Science Foundation of China (Grant no. 12271249) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

참고문헌

  1. J. Asadollahi and S. Salarian, Gorenstein objects in triangulated categories, J. Algebra 281 (2004), no. 1, 264-286. https://doi.org/10.1016/j.jalgebra.2004.07.027 
  2. M. Auslander and M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, RI, 1969. 
  3. J. Hu, D. Zhang, and P. Zhou, Proper classes and Gorensteinness in extriangulated categories, J. Algebra 551 (2020), 23-60. https://doi.org/10.1016/j.jalgebra.2019.12.028 
  4. J. Hu, D. Zhang, and P. Zhou, Proper resolutions and Gorensteinness in extriangulated categories, Front. Math. China 16 (2021), no. 1, 95-117. https://doi.org/10.1007/s11464-021-0887-8 
  5. J. Hu, D. Zhang, and P. Zhou, Gorenstein homological dimensions for extriangulated categories, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 4, 2235-2252. https://doi.org/10.1007/s40840-020-01057-9 
  6. Z. Huang, Homological dimensions relative to preresolving subcategories, Kyoto J. Math. 54 (2014), no. 4, 727-757. https://doi.org/10.1215/21562261-2801795 
  7. Z. Huang, Homological dimensions relative to preresolving subcategories II, Forum Math. 34 (2022), no. 2, 507-530. https://doi.org/10.1515/forum-2021-0136 
  8. C. Klappoth, n-extension closed subcategories of n-exangulated categories, arxiv:2209.01128. 
  9. Y. Liu and H. Nakaoka, Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra 528 (2019), 96-149. https://doi.org/10.1016/j.jalgebra.2019.03.005 
  10. X. Ma, T. W. Zhao, and Z. Y. Huang, Resolving subcategories of triangulated categories and relative homological dimension, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 11, 1513-1535. https://doi.org/10.1007/s10114-017-6416-8 
  11. H. Nakaoka and Y. Palu, Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Geom. Differ. Categ. 60 (2019), no. 2, 117-193. 
  12. W. Ren and Z. Liu, Gorenstein homological dimensions for triangulated categories, J. Algebra 410 (2014), 258-276. https://doi.org/10.1016/j.jalgebra.2014.03.037 
  13. L. Tan, Y. Gao, and Q. Chen, One-sided Frobenius pairs in extriangulated categories, Comm. Algebra 50 (2022), no. 12, 5345-5370. https://doi.org/10.1080/00927872.2022.2084748 
  14. P. Zhou and B. Zhu, Triangulated quotient categories revisited, J. Algebra 502 (2018), 196-232. https://doi.org/10.1016/j.jalgebra.2018.01.031 
  15. X. Zhu, Resolving resolution dimensions, Algebr. Represent. Theory 16 (2013), no. 4, 1165-1191. https://doi.org/10.1007/s10468-012-9351-5