Acknowledgement
The work of the first author was partially supported by NSF grants DMS-1565226, DMS-1801011 and DMS-2001128.
References
- M. Artin, J. T. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, in The Grothendieck Festschrift, Vol. I, 33-85, Progr. Math., 86, Birkhauser Boston, Boston, MA, 1990.
- W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Mathematics, 1327, Springer, Berlin, 1988. https://doi.org/10.1007/BFb0080378
- R. G. Chandler and M. Vancliff, The one-dimensional line scheme of a certain family of quantum P3s, J. Algebra 439 (2015), 316-333. https://doi.org/10.1016/j.jalgebra.2015.04.036
- A. Chirvasitu and S. P. Smith, Exotic elliptic algebras of dimension 4, Adv. Math. 309 (2017), 558-623. https://doi.org/10.1016/j.aim.2017.01.010
- A. Chirvasitu and S. P. Smith, Exotic elliptic algebras, Trans. Amer. Math. Soc. 371 (2019), no. 1, 279-333. https://doi.org/10.1090/tran/7341
- A. Chirvasitu, S. P. Smith, and M. Vancliff, A geometric invariant of 6-dimensional subspaces of 4 × 4 matrices, Proc. Amer. Math. Soc. 148 (2020), no. 3, 915-928. https://doi.org/10.1090/proc/14294
- A. Chirvasitu, S. P. Smith, and L. Z. Wong, Noncommutative geometry of homogenized quantum sl(2, C), Pacific J. Math. 292 (2018), no. 2, 305-354. https://doi.org/10.2140/pjm.2018.292.305
- C.-H. Cho, H. Hong, and S.-C. Lau, Noncommutative homological mirror functor, Mem. Amer. Math. Soc. 271 (2021), no. 1326, v+116 pp. https://doi.org/10.1090/memo/1326
- F. I. Diamond and J. Im, Modular forms and modular curves, in Seminar on Fermat's Last Theorem (Toronto, ON, 1993-1994), 39-133, CMS Conf. Proc., 17, Amer. Math. Soc., Providence, RI, 1995.
- D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer, New York, 1995. https://doi.org/10.1007/978-1-4612-5350-1
- B. L. Feigin and A. Odesskii, Vector bundles on an elliptic curve and Sklyanin algebras, in Topics in quantum groups and finite-type invariants, 65-84, Amer. Math. Soc. Transl. Ser. 2, 185, Adv. Math. Sci., 38, Amer. Math. Soc., Providence, RI, 1998. https://doi. org/10.1090/trans2/185/04
- R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer, New York, 1977.
- N. M. Katz and B. C. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, 108, Princeton Univ. Press, Princeton, NJ, 1985. https://doi.org/10. 1515/9781400881710 https://doi.org/10.1515/9781400881710
- P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent developments, in Integrable quantum field theories (Tvarminne, 1981), 61-119, Lecture Notes in Phys., 151, Springer, Berlin, 1982.
- T. Levasseur and S. P. Smith, Modules over the 4-dimensional Sklyanin algebra, Bull. Soc. Math. France 121 (1993), no. 1, 35-90. https://doi.org/10.24033/bsmf.2200
- B. Shelton and M. Vancliff, Some quantum P3 s with one point, Comm. Algebra 27 (1999), no. 3, 1429-1443. https://doi.org/10.1080/00927879908826504
- B. Shelton and M. Vancliff, Schemes of line modules. I, J. London Math. Soc. (2) 65 (2002), no. 3, 575-590. https://doi.org/10.1112/S0024610702003186
- E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Funktsional. Anal. i Prilozhen. 16 (1982), no. 4, 27-34, 96.
- E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation. Representations of a quantum algebra, Funktsional. Anal. i Prilozhen. 17 (1983), no. 4, 34-48.
- S. P. Smith, The four-dimensional Sklyanin algebras, K-Theory 8 (1994), no. 1, 65-80. https://doi.org/10.1007/BF00962090
- S. P. Smith and J. T. Stafford, Regularity of the four-dimensional Sklyanin algebra, Compositio Math. 83 (1992), no. 3, 259-289.
- S. P. Smith and J. M. Staniszkis, Irreducible representations of the 4-dimensional Sklyanin algebra at points of infinite order, J. Algebra 160 (1993), no. 1, 57-86. https://doi.org/10.1006/jabr.1993.1178
- J. T. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124 (1996), no. 1-3, 619-647. https://doi.org/10.1007/s002220050065
- M. Van den Bergh, An example with 20 point modules, Circulated privately, 1988.
- M. Van den Bergh, A translation principle for the four-dimensional Sklyanin algebras, J. Algebra 184 (1996), no. 2, 435-490. https://doi.org/10.1006/jabr.1996.0269
- M. Vancliff, K. Van Rompay, and L. Willaert, Some quantum P3 s with finitely many points, Comm. Algebra 26 (1998), no. 4, 1193-1208. https://doi.org/10.1080/00927879808826193