DOI QR코드

DOI QR Code

SOME ALGEBRAS HAVING RELATIONS LIKE THOSE FOR THE 4-DIMENSIONAL SKLYANIN ALGEBRAS

  • Alexandru Chirvasitu (Department of Mathematics University at Buffalo) ;
  • S. Paul Smith (Department of Mathematics University of Washington)
  • Received : 2022.04.24
  • Accepted : 2023.04.26
  • Published : 2023.07.01

Abstract

The 4-dimensional Sklyanin algebras are a well-studied 2-parameter family of non-commutative graded algebras, often denoted A(E, τ), that depend on a quartic elliptic curve E ⊆ ℙ3 and a translation automorphism τ of E. They are graded algebras generated by four degree-one elements subject to six quadratic relations and in many important ways they behave like the polynomial ring on four indeterminates except that they are not commutative. They can be seen as "elliptic analogues" of the enveloping algebra of 𝖌𝖑(2, ℂ) and the quantized enveloping algebras Uq(𝖌𝖑2). Recently, Cho, Hong, and Lau conjectured that a certain 2-parameter family of algebras arising in their work on homological mirror symmetry consists of 4-dimensional Sklyanin algebras. This paper shows their conjecture is false in the generality they make it. On the positive side, we show their algebras exhibit features that are similar to, and differ from, analogous features of the 4-dimensional Sklyanin algebras in interesting ways. We show that most of the Cho-Hong-Lau algebras determine, and are determined by, the graph of a bijection between two 20-point subsets of the projective space ℙ3. The paper also examines a 3-parameter family of 4-generator 6-relator algebras admitting presentations analogous to those of the 4-dimensional Sklyanin algebras. This class includes the 4-dimensional Sklyanin algebras and most of the Cho-Hong-Lau algebras.

Keywords

Acknowledgement

The work of the first author was partially supported by NSF grants DMS-1565226, DMS-1801011 and DMS-2001128.

References

  1. M. Artin, J. T. Tate, and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, in The Grothendieck Festschrift, Vol. I, 33-85, Progr. Math., 86, Birkhauser Boston, Boston, MA, 1990.
  2. W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Mathematics, 1327, Springer, Berlin, 1988. https://doi.org/10.1007/BFb0080378
  3. R. G. Chandler and M. Vancliff, The one-dimensional line scheme of a certain family of quantum P3s, J. Algebra 439 (2015), 316-333. https://doi.org/10.1016/j.jalgebra.2015.04.036
  4. A. Chirvasitu and S. P. Smith, Exotic elliptic algebras of dimension 4, Adv. Math. 309 (2017), 558-623. https://doi.org/10.1016/j.aim.2017.01.010
  5. A. Chirvasitu and S. P. Smith, Exotic elliptic algebras, Trans. Amer. Math. Soc. 371 (2019), no. 1, 279-333. https://doi.org/10.1090/tran/7341
  6. A. Chirvasitu, S. P. Smith, and M. Vancliff, A geometric invariant of 6-dimensional subspaces of 4 × 4 matrices, Proc. Amer. Math. Soc. 148 (2020), no. 3, 915-928. https://doi.org/10.1090/proc/14294
  7. A. Chirvasitu, S. P. Smith, and L. Z. Wong, Noncommutative geometry of homogenized quantum sl(2, C), Pacific J. Math. 292 (2018), no. 2, 305-354. https://doi.org/10.2140/pjm.2018.292.305
  8. C.-H. Cho, H. Hong, and S.-C. Lau, Noncommutative homological mirror functor, Mem. Amer. Math. Soc. 271 (2021), no. 1326, v+116 pp. https://doi.org/10.1090/memo/1326
  9. F. I. Diamond and J. Im, Modular forms and modular curves, in Seminar on Fermat's Last Theorem (Toronto, ON, 1993-1994), 39-133, CMS Conf. Proc., 17, Amer. Math. Soc., Providence, RI, 1995.
  10. D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer, New York, 1995. https://doi.org/10.1007/978-1-4612-5350-1
  11. B. L. Feigin and A. Odesskii, Vector bundles on an elliptic curve and Sklyanin algebras, in Topics in quantum groups and finite-type invariants, 65-84, Amer. Math. Soc. Transl. Ser. 2, 185, Adv. Math. Sci., 38, Amer. Math. Soc., Providence, RI, 1998. https://doi. org/10.1090/trans2/185/04
  12. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer, New York, 1977.
  13. N. M. Katz and B. C. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, 108, Princeton Univ. Press, Princeton, NJ, 1985. https://doi.org/10. 1515/9781400881710 https://doi.org/10.1515/9781400881710
  14. P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent developments, in Integrable quantum field theories (Tvarminne, 1981), 61-119, Lecture Notes in Phys., 151, Springer, Berlin, 1982.
  15. T. Levasseur and S. P. Smith, Modules over the 4-dimensional Sklyanin algebra, Bull. Soc. Math. France 121 (1993), no. 1, 35-90. https://doi.org/10.24033/bsmf.2200
  16. B. Shelton and M. Vancliff, Some quantum P3 s with one point, Comm. Algebra 27 (1999), no. 3, 1429-1443. https://doi.org/10.1080/00927879908826504
  17. B. Shelton and M. Vancliff, Schemes of line modules. I, J. London Math. Soc. (2) 65 (2002), no. 3, 575-590. https://doi.org/10.1112/S0024610702003186
  18. E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Funktsional. Anal. i Prilozhen. 16 (1982), no. 4, 27-34, 96.
  19. E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation. Representations of a quantum algebra, Funktsional. Anal. i Prilozhen. 17 (1983), no. 4, 34-48.
  20. S. P. Smith, The four-dimensional Sklyanin algebras, K-Theory 8 (1994), no. 1, 65-80. https://doi.org/10.1007/BF00962090
  21. S. P. Smith and J. T. Stafford, Regularity of the four-dimensional Sklyanin algebra, Compositio Math. 83 (1992), no. 3, 259-289.
  22. S. P. Smith and J. M. Staniszkis, Irreducible representations of the 4-dimensional Sklyanin algebra at points of infinite order, J. Algebra 160 (1993), no. 1, 57-86. https://doi.org/10.1006/jabr.1993.1178
  23. J. T. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124 (1996), no. 1-3, 619-647. https://doi.org/10.1007/s002220050065
  24. M. Van den Bergh, An example with 20 point modules, Circulated privately, 1988.
  25. M. Van den Bergh, A translation principle for the four-dimensional Sklyanin algebras, J. Algebra 184 (1996), no. 2, 435-490. https://doi.org/10.1006/jabr.1996.0269
  26. M. Vancliff, K. Van Rompay, and L. Willaert, Some quantum P3 s with finitely many points, Comm. Algebra 26 (1998), no. 4, 1193-1208. https://doi.org/10.1080/00927879808826193