DOI QR코드

DOI QR Code

Moving Temperature Profile Method for Efficient Three-Dimensional Finite Element Welding Residual Stress Analysis for Large Structures

대형구조물의 효율적 3차원 용접잔류응력해석을 위한 새로운 이동 온도 프로파일 방법

  • Cheol Ho Kim ;
  • Jae Min Gim ;
  • Yun Jae Kim
  • 김철호 (고려대학교 기계공학부) ;
  • 김재민 (삼성SDI(주)) ;
  • 김윤재 (고려대학교 기계공학부)
  • Received : 2023.10.19
  • Accepted : 2023.12.12
  • Published : 2023.12.30

Abstract

For three-dimensional finite element welding residual stress simulation, several methods are available. Two widely used methods are the moving heat source model using heat flux and the temperature boundary condition model using the temperature profile of the welded beads. However, each model has pros and cons in terms of calculation times and difficulties in determining welding parameters. In this paper, a new method using the moving temperature profile model is proposed to perform efficiently 3-D FE welding residual stress analysis for large structures. Comparison with existing experimental residual stress measurement data of two-pass welding pipe and SNL(Sandia National Laboratories) mock-up canister shows the accuracy and efficiency of the proposed method.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019M2D2A2048296)

References

  1. Bunn, M. G., Weeks, J., Holdren, J. P., MacFarlane, A. M., Pickett, S. E., Suzuki, A., and Suzuki, T., 2001, "Interim Storage of Spent Nuclear Fuel: A Safe, Flexible, and Cost-Effective Approach to Spent Fuel Management", Harvard University and University of Tokyo.
  2. Feng, Z. (Ed.)., 2005, Processes and mechanisms of welding residual stress and distortion, Elsevier, Cambridge.
  3. Xie, Y., and Zhang, J., 2015, "Chloride-induced stress corrosion cracking of used nuclear fuel welded stainless steel canisters: A review", J. Nucl Mater, Vol. 466, pp. 85-93. doi:https://doi.org/10.1016/j.jnucmat.2015.07.043
  4. Tani, J. I., Mayuzumi, M., Arai, T., and Hara, N., 2007, "Stress corrosion cracking growth rates of candidate canister materials for spent nuclear fuel storage in chloride- containing atmosphere", Mater Trans, Vol. 48, No. 6, pp. 1431-1437. doi:https://doi.org/10.2320/matertrans.MRA20063 67
  5. Park, S. J., Kim, H. T., and Kim, Y. J., 2022, "Sensitivity Analysis of Heat Source Parameter for Predicting Residual Stress Induced by Electron Beam Welding", Trans. of the KPVP, Vol. 18, No. 2, pp. 61-68. doi:https://doi.org/10.20466/KPVP.202.18.2.061
  6. Soh, N. H., Oh, G. J., Huh, N. S., Lee, S. H., Park, H. B., Lee, S. G., Kim, J. S., Kim, Y. J., 2012, "Effect of Finite Element Analysis Parameters on Weld Residual Stress of Dissimilar Metal Weld in Nuclear Reactor Piping Nozzles", Trans. of the KPVP, Vol. 8, No. 1, pp. 8-18. https://doi.org/10.20466/KPVP.2012.8.1.008
  7. Goldak, J., Chakravarti, A., and Bibby, M., 1984, "A new finite element model for welding heat sources", Metall trans B, Vol. 15, pp. 299-305. doi:https://doi.org/10.1007/BF02667333
  8. Seles, K., Peric, M., and Tonkovic, Z., 2018, "Numerical simulation of a welding process using a prescribed temperature approach", J. Constr Steel Res, Vol. 145, pp. 49-57. doi:https://doi.org/10.1016/j.jcsr.2018.02.012
  9. Deng, D., and Murakawa, H., 2006, "Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements", Comp Mater Sci, Vol. 37, No. 3, pp. 269-277. doi:https://doi.org/10.1016/j.commatsci.2005. 07.007
  10. NRC, 2013, "Finite Element Analysis of Weld Residual Stresses in Austenitic Stainless Steel Dry Cask Storage System Canisters", U.S. Nuclear Regulatory Commission, Washington, DC.
  11. ABAQUS, 2018, "ABAQUS Standard/User's Manual, Version 6.4," Hibbit Karlsson and Sorensen, Inc.
  12. Song, T. K., Bae, H. Y., Kim, Y. J., Lee, K. S., and Park, C. Y., 2008, "Sensitivity analyses of finite element method for estimating residual stress of dissimilar metal multi-pass weldment in Nuclear power plant", Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 9, pp.770-781. doi:https://doi.org/10.3795/KSME-A.2008.32.9.770
  13. Leggatt, N. A., Dennis, R. and Hurrel, P. R., 2007, "Modeling the Fabrication of a Pressure Vessel Toroidal Seal," ASME 2007 PVP Conference, San Antonio, Texas, July 22-26, Vol. 42843, pp. 839-849. PVP2007-26145.
  14. Dennis, R. J., Leggatt, N. A. and Gregg, A., 2006, "Optimisation of Weld Modeling Techniques : Bead on Plate Analysis," ASME 2006 PVP Conference, Vancouver, BC, July 23-27, Vol. 47578, pp. 967-978, PVP2006-ICPVT-11-93907.
  15. Enos, D., and Bryan, C. R., 2016, "Characterization of Canister Mockup Weld Residual Stresses," Sandia National Lab, Albuquerque, NM, SAND2016-12375R.