DOI QR코드

DOI QR Code

Self-centering passive base isolation system incorporating shape memory alloy wires for reduction in base drift

  • Sania Dawood (School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST)) ;
  • Muhammad Usman (School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST)) ;
  • Mati Ullah Shah (School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST)) ;
  • Muhammad Rizwan (Military College of Engineering (MCE), National University of Sciences and Technology (NUST))
  • Received : 2022.07.27
  • Accepted : 2023.04.28
  • Published : 2023.05.25

Abstract

Base isolation is one of the most widely implemented and well-known technique to reduce structural vibration and damages during an earthquake. However, while the base-isolated structure reduces storey drift significantly, it also increases the base drifts causing many practical problems. This study proposes the use of Shape Memory Alloys (SMA) wires for the reduction in base drift while controlling the overall structure vibrations. A multi-degree-of-freedom (MDOF) structure along with base isolators and Shape-Memory-Alloys (SMA) wires in diagonal is tested experimentally and analytically. The isolation bearing considered in this study consists of laminates of steel and silicon rubber. The performance of the proposed structure is evaluated and studied under different loadings including harmonic loading and seismic excitation. To assess the seismic performance of the proposed structure, shake table tests are conducted on base-isolated MDOF frame structure incorporating SMA wires, which is subjected to incremental harmonic and historic seismic loadings. Root mean square acceleration, displacement and drift are analyzed and discussed in detail for each story. To better understand the structure response, the percentage reduction of displacement is also determined for each story. The result shows that the reduction in the response of the proposed structure is much better than conventional base-isolated structure.

Keywords

References

  1. Arslan Hafeez, M., Usman, M., Umer, M.A. and Hanif, A. (2020), "Recent progress in isotropic magnetorheological elastomers and their properties: A Review", Polymers, 12(12), 3023. https://doi.org/10.3390/polym12123023
  2. Baker, J.W. (2007), "Measuring bias in structural response caused by ground motion scaling", Proceedings of Pacific Conference on Earthquake Engineering, no. 056, pp. 1-6. https://doi.org/10.1002/eqe
  3. Bhatt, G., Paul, D.K. and Bhowmick, S. (2018), "Design of Base Isolation System for Buildings", In: Design and Optimization of Mechanical Engineering Products, pp. 67-82. https://doi.org/10.4018/978-1-5225-3401-3.ch004
  4. Cao, S., Ozbulut, O.E., Wu, S., Sun, Z. and Deng, J. (2020), "Multi-level SMA/lead rubber bearing isolation system for seismic protection of bridges", Smart Mater. Struct., 29(5), p. 055045. https://doi.org/10.1088/1361-665X/ab802b
  5. Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., Int. J., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
  6. Deng, J., Hu, F., Ozbulut, O.E. and Cao, S. (2022), "Verification of multi-level SMA/lead rubber bearing isolation system for seismic protection of bridges", Soil Dyn. Earthq. Eng., 161, 107380. https://doi.org/10.1016/j.soildyn.2022.107380
  7. DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations", J. Earthq. Eng., 8(3), 415-429. https://doi.org/10.1080/13632460409350495
  8. DesRoches, R., McCormick, J. and Delemont, M. (2004), "Cyclic properties of superelastic shape memory alloy wires and bars", J. Struct. Eng., 130(1), 38-46. https://doi.org/10.1061/(asce)0733-9445(2004)130:1(38)
  9. Dezfuli, F.H. and Alam, M.S. (2013), "Shape memory alloy wire-based smart natural rubber bearing", Smart Mater. Struct., 22(4), 045013. https://doi.org/10.1088/0964-1726/22/4/045013
  10. Dezfuli, F.H., Li, S., Alam, M.S. and Wang, J.Q. (2017), "Effect of constitutive models on the seismic response of an SMA-LRB isolated highway bridge", Eng. Struct., 148, 113-125. https://doi.org/10.1016/j.engstruct.2017.06.036
  11. Dizaji, F.S. and Dizaji, M.S. (2021), "A Novel Smart Memory Alloy Re-Centering Damper for Passive Protection of Structures Subjected to Seismic Excitations Using High-Performance NiTiHfPd Material", (ArXiv:2105.04081v1 [Nlin.AO]), ArXiv Adaptation and Self-Organizing Systems 22901.
  12. Fan, F.G., Ahmadi, G., Mostaghel, N. and Tadjbakhsh, I.G. (1991), "Performance analysis of aseismic base isolation systems for a multi-story building", Soil Dyn. Earthq. Eng., 10(3), 152-171. https://doi.org/10.1016/0267-7261(91)90029-Y
  13. Fang, C., Liang, D., Zheng, Y. and Lu, S. (2022), "Seismic performance of bridges with novel SMA cable-restrained high damping rubber bearings against near-fault ground motions", Earthq. Eng. Struct. Dyn., 51(1), 44-65. https://doi.org/10.1002/eqe.3555
  14. Gur, S., Frantziskonis, G.N. and Mishra, S.K. (2017), "Thermally modulated shape memory alloy friction pendulum (tmSMA-FP) for substantial near-fault earthquake structure protection", Struct. Control Health Monitor., 24(11), e2021. https://doi.org/https://doi.org/10.1002/stc.2021
  15. Han, Y.L., Li, Q.S., Li, A.Q., Leung, A.Y.T. and Lin, P.H. (2003), "Structural vibration control by shape memory alloy damper", Earthq. Eng. Struct. Dyn., 32(3), 483-494. https://doi.org/10.1002/eqe.243
  16. Huang, B., Zhang, H., Wang, H. and Song, G. (2014), "Passive base isolation with superelastic nitinol SMA helical springs", Smart Mater. Struct., 23(6), p. 065009. https://doi.org/10.1088/0964-1726/23/6/065009
  17. Huang, H., Zhu, Y.Z. and Chang, W.S. (2020), "Comparison of bending fatigue of NiTi and CuAlMn shape memory alloy bars", Adv. Mater. Sci. Eng., 2020, 1-9. https://doi.org/10.1155/2020/8024803.
  18. Jani, J.M., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Des., 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084
  19. Johnson, Erik A, Juan C Ramallo, Billie F Spencer, and Michael K Sain. (1998), "Intelligent base isolation systems", Proceedings of the Second World Conference on Structural Control, Kyoto, Japan, June-July, pp. 1-10.
  20. Jose, S.K., Anjali, G.S., Nair, A.S., Adithya, D.A., Sony, A. and Arunima, A.S. (2021), "Fixed and Base Isolated Framed Structures: A Comparative Study", J. Phys.: Conference Series, 2070(1). https://doi.org/10.1088/1742-6596/2070/1/012198
  21. Khan, I.U., Usman, M. and Tanveer, M. (2021), "Vibration control of an irregular structure using single and multiple tuned mass dampers", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 12, 1-26. https://doi.org/10.1680/jstbu.21.00011
  22. Komur, M., Karabork, T. and Deneme, I. (2011), "Nonlinear dynamic analysis of isolated and fixed-base reinforced concrete structures", Gazi Univ. J. Sci., 24(3), 463-475.
  23. Koo, G.H., Shin, T.M. and Ma, S.J. (2021), "Shaking table tests of lead inserted small-sized laminated rubber bearing for nuclear component seismic isolation", Appl. Sci., 11(10), p. 4431. https://doi.org/10.3390/app11104431
  24. Li, J., Li, Y., Li, W. and Samali, B. (2013), "Development of adaptive seismic isolators for ultimate seismic protection of civil structures", Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Vol. 8692, San Diego, CA, USA, March. https://doi.org/10.1117/12.2009626
  25. Li, H.N., Liu, M.M. and Fu, X. (2018), "An innovative recentering SMA-lead damper and its application to steel frame structures", Smart Mater. Struct., 27(7), p. 075029. https://doi.org/10.1088/1361-665X/aac28f.
  26. Li, S., Dezfuli, F.H., Alam, M.S. and Wang, J.Q. (2022), "Design, manufacturing, and performance evaluation of a novel smart roller bearing equipped with shape memory alloy wires", Smart Mater. Struct., 31(2), 25032. https://doi.org/10.1088/1361-665X/ac4690
  27. Liang, D., Zheng, Y., Fang, C., Yam, M.C. and Zhang, C. (2020), "Shape memory alloy (SMA)-cable-controlled sliding bearings: Development, testing, and system behavior", Smart Materials and Structures, 29(8), 85006. https://doi.org/10.1088/1361-665X/ab8f68
  28. Liu, Y. and J. Van Humbeeck. (1997), "On the damping behaviour of NiTi shape memory alloy", Le Journal de Physique IV, 7(5), C5-519. https://doi.org/10.1051/jp4:1997582
  29. Liu, Y., Wang, H., Qiu, C. and Zhao, X. (2019), "Seismic behavior of superelastic shape memory alloy spring in base isolation system of multi-story steel frame", Materials, 12(6), p. 997. https://doi.org/10.3390/ma12060997
  30. Memon, S.A., Zain, M., Zhang, D., Rehman, S.K.U., Usman, M. and Lee, D. (2020), "Emerging trends in the growth of structural systems for tall buildings", J. Struct. Integr. Maint., 5(3), 155-170. https://doi.org/10.1080/24705314.2020.1765270
  31. Omori, T. (2012), "Cu-Al-Mn Super-elastic Alloy Bars as Dissipative Brace System in Structural Steel Frame", Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE).
  32. Ozbulut, O.E. and Hurlebaus, S. (2011), "Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes", Earthq. Eng. Struct. Dyn., 40(3), 273-291. https://doi.org/https://doi.org/10.1002/eqe.1022
  33. Pang, Y., He, W. and Zhong, J. (2021), "Risk-based design and optimization of shape memory alloy restrained sliding bearings for highway bridges under near-fault ground motions", Engineering Structures, 241, 112421. https://doi.org/10.1016/j.engstruct.2021.112421
  34. Qiu, C. and Zhu, S. (2017), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. Dy., 46(1), 117-137. https://doi.org/10.1002/eqe.2777
  35. Ramallo, J.C., Johnson, E.A., Spencer, B.F. and Sain, M.K. (2003), "Semi-active building base isolation", Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, USA. https://doi.org/10.1109/acc.1999.782881
  36. Shah, M.U. and Usman, M. (2022), "An experimental study of tuned liquid column damper controlled multi-degree of freedom structure subject to harmonic and seismic excitations", Plos one, 17(6), e0269910. https://doi.org/10.1371/journal.pone.0269910
  37. Shah, M.U., Usman, M., Farooq, S.H. and Kim, I.H. (2022a), "Effect of tuned spring on vibration control performance of modified liquid column ball damper", Appl. Sci., 12(1), 318. https://doi.org/10.3390/app12010318
  38. Shah, M.U., Usman, M., Farooq, S.H. and Rizwan, M. (2022b), "Spring-controlled modified tuned liquid column ball damper for vibration mitigation of structures", J. Sound Vib., 545, p. 117443. https://doi.org/10.1016/j.jsv.2022.117443
  39. Shi, F., Ozbulut, O.E. and Zhou, Y. (2020), "Influence of shape memory alloy brace design parameters on seismic performance of self-centering steel frame buildings", Struct. Control Health Monitor., 27(1), 1-18. https://doi.org/10.1002/stc.2462
  40. Shinozuka, M., Chaudhuri, S.R. and Mishra, S.K. (2015), "Shape-memory-alloy supplemented lead rubber bearing (SMA-LRB) for seismic isolation", Probabil. Eng. Mech., 41, 34-45. https://doi.org/10.1016/j.probengmech.2015.04.004
  41. Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
  42. Spencer, K., Hedayati Dezfuli, F. and Alam, M. (2017), "Design and Performance Evaluation of Shape Memory Alloy (SMA) Cross-Wire Configured High Damping Rubber Bearing", In: Leadership in Sustainable Infrastructure, pp. 1-10, Canadian Society for Civil Engineering; Vancouver, Canada.
  43. Tanveer, M., Usman, M., Khan, I.U., Ahmad, S., Hanif, A. and Farooq, S.H. (2019), "Application of tuned liquid column ball damper (TLCBD) for improved vibration control performance of multi-storey structure", PLoS One, 14(10), 1-15. https://doi.org/10.1371/journal.pone.0224436
  44. Tanveer, M., Usman, M., Khan, I.U., Farooq, S.H. and Hanif, A. (2020), "Material optimization of tuned liquid column ball damper (TLCBD) for the vibration control of multi-storey structure using various liquid and ball densities", J. Build. Eng., 32, 101742. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101742
  45. Ullah, M., Usman, M., Kim, I.H. and Dawood, S. (2022), "Analytical and experimental investigations on the performance of tuned liquid column ball damper considering a hollow ball", Struct. Eng. Mech., Int. J., 83(5), 655-669. https://doi.org/10.12989/sem.2022.83.5.655
  46. Usman, M. and Jung, H.J. (2015), "Recent developments of magneto-rheological elastomers for civil engineering applications", Smart Material Actuators: Recent Advances in Material Characterization and Application, Hauppauge, NY, USA.
  47. Varughese, K. and El-Hacha, R. (2020), "Design and behaviour of steel braced frame reinforced with NiTi SMA wires", Eng. Struct., 212, 110502. https://doi.org/10.1016/j.engstruct.2020.110502
  48. Wang, B., Zhu, S. and Casciati, F. (2020a), "Experimental study of novel self-centering seismic base isolators incorporating superelastic shape memory alloys", J. Struct. Eng., 146(7), 4020129. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002679
  49. Wang, J., Cao, Y., Xu, Y., Gu, X., Zhu, J. and Zhang, W. (2020b), "Finite element modeling of the damping capacity and vibration behavior of cellular shape memory alloy", Mech. Adv. Mater. Struct., 29(15), 2142-2155. https://doi.org/10.1080/15376494.2020.1852349
  50. Wang, B., Chen, P., Zhu, S. and Dai, K. (2023), "Seismic performance of buildings with novel self-centering base isolation system for earthquake resilience", Earthq. Eng. Struct. Dyn., 52(5), 1360-1380. https://doi.org/https://doi.org/10.1002/eqe.3820
  51. Wilde, K., Gardoni, P. and Fujino, Y. (2000), "Base isolation system with shape memory alloy device for elevated highway bridges", Eng. Struct., 22(3), 222-229. https://doi.org/10.1016/S0141-0296(98)00097-2
  52. Yan, S., Niu, J., Mao, P., Song, G. and Wang, W. (2013), "Experimental research on passive control of steel frame structure using SMA wires", Mathe. Problems Eng., 2013. https://doi.org/10.1155/2013/416282
  53. Zhang, B., Zeng, S., Tang, F., Hu, S., Zhou, Q. and Jia, Y. (2021), "Experimental and Numerical Analysis of the Mechanical Properties of a Pretreated Shape Memory Alloy Wire in a Self-Centering Steel Brace", Processes, 9(1), 1-15. https://doi.org/10.3390/pr9010080
  54. Zheng, W., Wang, H., Li, J. and Shen, H. (2020), "Parametric study of superelastic-sliding LRB system for seismic response control of continuous bridges", J. Bridge Eng., 25(9), 4020062. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001596
  55. Zheng, W.Z., Wang, H., Li, J. and Shen, H.J. (2021a), "Parametric study of SMA-based friction pendulum system for response control of bridges under near-fault ground motions", J. Earthq. Eng., 25(8), 1494-1512. https://doi.org/10.1080/13632469.2019.1582442
  56. Zheng, W., Wang, H., Hao, H. and Bi, K. (2021b), "Superelastic CuAlBe wire-based sliding lead rubber bearings for seismic isolation of bridges in cold regions", Eng. Struct., 247, 113102. https://doi.org/10.1016/j.engstruct.2021.113102
  57. Zheng, W., Tan, P., Li, J., Wang, H., Tan, J. and Sun, Z. (2022a), "Sliding-LRB incorporating superelastic SMA for seismic protection of bridges under near-fault earthquakes: A comparative study", Soil Dyn. Earthq. Eng., 155, 107161. https://doi.org/10.1016/j.soildyn.2022.107161
  58. Zheng, W., Tan, P., Liu, Y., Wang, H. and Chen, H. (2022b), "Multi-stage superelastic variable stiffness pendulum isolation system for seismic response control of bridges under near-fault earthquakes", Struct. Control Health Monitor., 29(12), 1-17. https://doi.org/10.1002/stc.3114
  59. Zheng, W., Tan, P., Zhang, Z., Wang, H. and Sun, Z. (2022c), "Damping enhanced novel re-centering seismic isolator incorporating superelastic SMA for response control of bridges under near-fault earthquakes", Smart Mater. Struct., 31(6), p. 065015. https://doi.org/10.1088/1361-665X/ac6b6a
  60. Zheng, W., Tan, P., Li, J., Wang, H., Liu, Y. and Xian, Z. (2023), "Superelastic pendulum isolator with multi-stage variable curvature for seismic resilience enhancement of cold-regional bridges", Eng. Struct., 284, 115960. https://doi.org/https://doi.org/10.1016/j.engstruct.2023.115960