• Title/Summary/Keyword: shake table testing

Search Result 26, Processing Time 0.022 seconds

Compensation techniques for experimental errors in real-time hybrid simulation using shake tables

  • Nakata, Narutoshi;Stehman, Matthew
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1055-1079
    • /
    • 2014
  • Substructure shake table testing is a class of real-time hybrid simulation (RTHS). It combines shake table tests of substructures with real-time computational simulation of the remaining part of the structure to assess dynamic response of the entire structure. Unlike in the conventional hybrid simulation, substructure shake table testing imposes acceleration compatibilities at substructure boundaries. However, acceleration tracking of shake tables is extremely challenging, and it is not possible to produce perfect acceleration tracking without time delay. If responses of the experimental substructure have high correlation with ground accelerations, response errors are inevitably induced by the erroneous input acceleration. Feeding the erroneous responses into the RTHS procedure will deteriorate the simulation results. This study presents a set of techniques to enable reliable substructure shake table testing. The developed techniques include compensation techniques for errors induced by imperfect input acceleration of shake tables, model-based actuator delay compensation with state observer, and force correction to eliminate process and measurement noises. These techniques are experimentally investigated through RTHS using a uni-axial shake table and three-story steel frame structure at the Johns Hopkins University. The simulation results showed that substructure shake table testing with the developed compensation techniques provides an accurate and reliable means to simulate the dynamic responses of the entire structure under earthquake excitations.

Statistical reference values for control performance assessment of seismic shake table testing

  • Chen, Pei-Ching;Kek, Meng-Kwee;Hu, Yu-Wei;Lai, Chin-Ta
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.595-603
    • /
    • 2018
  • Shake table testing has been regarded as one of the most effective experimental approaches to evaluate seismic response of structural systems subjected to earthquakes. However, reproducing a prescribed acceleration time history precisely over the frequency of interest is challenging because shake table test systems are eventually nonlinear by nature. In addition, interaction between the table and specimen could affect the control accuracy of shake table testing significantly. Various novel control algorithms have been proposed to improve the control accuracy of shake table testing; however, reference values for control performance assessment remain rare. In this study, reference values for control performance assessment of shake table testing are specified based on the statistical analyses of 1,209 experimental data provided by the Seismic Simulator Laboratory of National Center for Research on Earthquake Engineering in Taiwan. Three individual reference values are considered for the assessment including the root-mean-square error of the achieved acceleration time history; the percentage of the spectral acceleration that exceeds the determined tolerance range over the frequency of interest; and the error-ratio of the achieved peak ground acceleration. Quartiles of the real experimental data in terms of the three objective variables are obtained, providing users with solid and simple references to evaluate the control performance of shake table testing. Finally, a set of experimental data of a newly developed control framework implementation for uni-axial shake tables are used as an application example to demonstrate the significant improvement of control accuracy according to the reference values provided in this study.

Optimal input cross-power spectra in shake table testing of asymmetric structures

  • Ammanagi, S.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1115-1132
    • /
    • 2015
  • The study considers earthquake shake table testing of bending-torsion coupled structures under multi-component stationary random earthquake excitations. An experimental procedure to arrive at the optimal excitation cross-power spectral density (psd) functions which maximize/minimize the steady state variance of a chosen response variable is proposed. These optimal functions are shown to be derivable in terms of a set of system frequency response functions which could be measured experimentally without necessitating an idealized mathematical model to be postulated for the structure under study. The relationship between these optimized cross-psd functions to the most favourable/least favourable angle of incidence of seismic waves on the structure is noted. The optimal functions are also shown to be system dependent, mathematically the sharpest, and correspond to neither fully correlated motions nor independent motions. The proposed experimental procedure is demonstrated through shake table studies on two laboratory scale building frame models.

Performance of an isolated simply supported bridge crossing fault rupture: shake table test

  • Xiang, Nailiang;Yang, Huaiyu;Li, Jianzhong
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.665-677
    • /
    • 2019
  • This study utilizes large-scale shake table test to investigate the seismic performance of an isolated bridge with lead rubber bearings crossing an active fault. Two transverse restraining systems with and without shear keys are tested by applying spatially varying ground motions. It is shown that the near-fault span exhibits larger bearing displacement than the crossing-fault span. Bridge piers away from the fault rupture are more vulnerable than those adjacent to the fault rupture by attracting more seismic demand. It is also verified that the shear keys are effective in restraining the bearing displacement on the near-fault span, particularly under the large permanent ground displacement.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

Experimental identification of the six DOF C.G.S., Algeria, shaking table system

  • Airouche, Abdelhalim;Bechtoula, Hakim;Aknouche, Hassan;Thoen, Bradford K.;Benouar, Djillali
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.137-154
    • /
    • 2014
  • Servohydraulic shaking tables are being increasingly used in the field of earthquake engineering. They play a critical role in the advancement of the research state and remain one of the valuable tools for seismic testing. Recently, the National Earthquake Engineering Research Center, CGS, has acquired a 6.1m x 6.1 m shaking table system which has a six degree-of-freedom testing capability. The maximum specimen mass that can be tested on the shaking table is 60 t. This facility is designed specially for testing a complete civil engineering structures, substructures and structural elements up to collapse or ultimate limit states. It can also be used for qualification testing of industrial equipments. The current paper presents the main findings of the experimental shake-down characterization testing of the CGS shaking table. The test program carried out in this study included random white noise and harmonic tests. These tests were performed along each of the six degrees of freedom, three translations and three rotations. This investigation provides fundamental parameters that are required and essential while elaborating a realistic model of the CGS shaking table. Also presented in this paper, is the numerical model of the shaking table that was established and validated.

Seismic Capacity Test of Nuclear Piping System using Multi-platform Shake Table (다지점 진동대를 이용한 원자력발전소 배관계통의 내진성능실험)

  • Cheung, Jin-Hwan;Gae, Man-Soo;Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, Min-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-31
    • /
    • 2013
  • In this study, dynamic characteristics and seismic capacity of the nuclear power plant piping system are evaluated by model test results using multi-platform shake table. The model is 21.2 m long and consists of straight pipes, elbows, and reducers. The stainless steel pipe diameters are 60.3 mm (2 in.) and 88.9 mm (3 in.) and the system was assembled in accordance with ASME code criteria. The dynamic characteristics such as natural frequency, damping and acceleration responses of the piping system were estimated using the measured acceleration, displacement and strain data. The natural frequencies of the specimen were not changed significantly before and after the testing and the failure and leakage of the piping system was not observed until the final excitation. The damping ratio was estimated in the range of 3.13 ~ 4.98 % and it is found that the allowable stress(345 MPa) according to ASME criteria is 2.5 times larger than the measured maximum stress (138 MPa) of the piping system even under the maximum excitation level of this test.

Shake-table tests on moment-resisting frames by introducing engineered cementitious composite in plastic hinge length

  • Khan, Fasih A.;Khan, Sajjad W.;Shahzada, Khan;Ahmad, Naveed;Rizwan, Muhammad;Fahim, Muhammad;Rashid, Muhammad
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • This paper presents experimental studies on reinforced concrete moment resisting frames that have engineered cementitious composite (ECC) in plastic hinge length (PHL) of beam/column members and beam-column joints. A two-story frame structure reduced by a 1:3 scale was further tested through a shake-table (seismic simulator) using multiple levels of simulated earthquake motions. One model conformed to all the ACI-318 requirements for IMRF, whereas the second model used lower-strength concrete in the beam/column members outside PHL. The acceleration time history of the 1994 Northridge earthquake was selected and scaled to multiple levels for shake-table testing. This study reports the observed damage mechanism, lateral strength-displacement capacity curve, and the computed response parameters for each model. The tests verified that nonlinearity remained confined to beam/column ends, i.e., member joint interface. Calculated response modification factors were 11.6 and 9.6 for the code-conforming and concrete strength deficient models. Results show that the RC-ECC frame's performance in design-based and maximum considered earthquakes; without exceeding maximum permissible drift under design-base earthquake motions and not triggering any unstable mode of damage/failure under maximum considered earthquakes. This research also indicates that the introduction of ECC in PHL of the beam/column members' detailing may be relaxed for the IMRF structures.

Systems to prevent the load resistance loss of pallet racks exposed to cyclic external force

  • Heo, Gwanghee;Kim, Chunggil;Baek, Eunrim;Jeon, Seunggon
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • This study aims to determine the cause of the load resistance loss in storage racks that can be attributed to external forces such as earthquakes and to improve safety by developing reinforcement systems that can prevent load resistance loss. To this end, a static cyclic loading test was performed on pallet racks commonly used in logistics warehouses. The test results indicated that a pallet rack exposed to an external force loses more than 50% of its load resistance owing to the damage caused to column-beam joints. Three reinforcement systems were developed for preventing load resistance loss in storage racks exposed to an external force and for performing differentiated target functions: column reinforcement device, seismic damper, and viscoelastic damper. Shake table testing was performed to evaluate the earthquake response and verify the performance of these reinforcement systems. The results confirmed that, the maximum displacement, which causes the loss of load resistance and the permanent deformation of racks under external force, is reduced using the developed reinforcement devices. Thus, the appropriate selection of the developed reinforcement devices by users can help secure the safety of the storage racks.

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.