참고문헌
- Arslan Hafeez, M., Usman, M., Umer, M.A. and Hanif, A. (2020), "Recent progress in isotropic magnetorheological elastomers and their properties: A Review", Polymers, 12(12), 3023. https://doi.org/10.3390/polym12123023
- Baker, J.W. (2007), "Measuring bias in structural response caused by ground motion scaling", Proceedings of Pacific Conference on Earthquake Engineering, no. 056, pp. 1-6. https://doi.org/10.1002/eqe
- Bhatt, G., Paul, D.K. and Bhowmick, S. (2018), "Design of Base Isolation System for Buildings", In: Design and Optimization of Mechanical Engineering Products, pp. 67-82. https://doi.org/10.4018/978-1-5225-3401-3.ch004
- Cao, S., Ozbulut, O.E., Wu, S., Sun, Z. and Deng, J. (2020), "Multi-level SMA/lead rubber bearing isolation system for seismic protection of bridges", Smart Mater. Struct., 29(5), p. 055045. https://doi.org/10.1088/1361-665X/ab802b
- Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., Int. J., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
- Deng, J., Hu, F., Ozbulut, O.E. and Cao, S. (2022), "Verification of multi-level SMA/lead rubber bearing isolation system for seismic protection of bridges", Soil Dyn. Earthq. Eng., 161, 107380. https://doi.org/10.1016/j.soildyn.2022.107380
- DesRoches, R. and Smith, B. (2004), "Shape memory alloys in seismic resistant design and retrofit: a critical review of their potential and limitations", J. Earthq. Eng., 8(3), 415-429. https://doi.org/10.1080/13632460409350495
- DesRoches, R., McCormick, J. and Delemont, M. (2004), "Cyclic properties of superelastic shape memory alloy wires and bars", J. Struct. Eng., 130(1), 38-46. https://doi.org/10.1061/(asce)0733-9445(2004)130:1(38)
- Dezfuli, F.H. and Alam, M.S. (2013), "Shape memory alloy wire-based smart natural rubber bearing", Smart Mater. Struct., 22(4), 045013. https://doi.org/10.1088/0964-1726/22/4/045013
- Dezfuli, F.H., Li, S., Alam, M.S. and Wang, J.Q. (2017), "Effect of constitutive models on the seismic response of an SMA-LRB isolated highway bridge", Eng. Struct., 148, 113-125. https://doi.org/10.1016/j.engstruct.2017.06.036
- Dizaji, F.S. and Dizaji, M.S. (2021), "A Novel Smart Memory Alloy Re-Centering Damper for Passive Protection of Structures Subjected to Seismic Excitations Using High-Performance NiTiHfPd Material", (ArXiv:2105.04081v1 [Nlin.AO]), ArXiv Adaptation and Self-Organizing Systems 22901.
- Fan, F.G., Ahmadi, G., Mostaghel, N. and Tadjbakhsh, I.G. (1991), "Performance analysis of aseismic base isolation systems for a multi-story building", Soil Dyn. Earthq. Eng., 10(3), 152-171. https://doi.org/10.1016/0267-7261(91)90029-Y
- Fang, C., Liang, D., Zheng, Y. and Lu, S. (2022), "Seismic performance of bridges with novel SMA cable-restrained high damping rubber bearings against near-fault ground motions", Earthq. Eng. Struct. Dyn., 51(1), 44-65. https://doi.org/10.1002/eqe.3555
- Gur, S., Frantziskonis, G.N. and Mishra, S.K. (2017), "Thermally modulated shape memory alloy friction pendulum (tmSMA-FP) for substantial near-fault earthquake structure protection", Struct. Control Health Monitor., 24(11), e2021. https://doi.org/https://doi.org/10.1002/stc.2021
- Han, Y.L., Li, Q.S., Li, A.Q., Leung, A.Y.T. and Lin, P.H. (2003), "Structural vibration control by shape memory alloy damper", Earthq. Eng. Struct. Dyn., 32(3), 483-494. https://doi.org/10.1002/eqe.243
- Huang, B., Zhang, H., Wang, H. and Song, G. (2014), "Passive base isolation with superelastic nitinol SMA helical springs", Smart Mater. Struct., 23(6), p. 065009. https://doi.org/10.1088/0964-1726/23/6/065009
- Huang, H., Zhu, Y.Z. and Chang, W.S. (2020), "Comparison of bending fatigue of NiTi and CuAlMn shape memory alloy bars", Adv. Mater. Sci. Eng., 2020, 1-9. https://doi.org/10.1155/2020/8024803.
- Jani, J.M., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Des., 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084
- Johnson, Erik A, Juan C Ramallo, Billie F Spencer, and Michael K Sain. (1998), "Intelligent base isolation systems", Proceedings of the Second World Conference on Structural Control, Kyoto, Japan, June-July, pp. 1-10.
- Jose, S.K., Anjali, G.S., Nair, A.S., Adithya, D.A., Sony, A. and Arunima, A.S. (2021), "Fixed and Base Isolated Framed Structures: A Comparative Study", J. Phys.: Conference Series, 2070(1). https://doi.org/10.1088/1742-6596/2070/1/012198
- Khan, I.U., Usman, M. and Tanveer, M. (2021), "Vibration control of an irregular structure using single and multiple tuned mass dampers", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 12, 1-26. https://doi.org/10.1680/jstbu.21.00011
- Komur, M., Karabork, T. and Deneme, I. (2011), "Nonlinear dynamic analysis of isolated and fixed-base reinforced concrete structures", Gazi Univ. J. Sci., 24(3), 463-475.
- Koo, G.H., Shin, T.M. and Ma, S.J. (2021), "Shaking table tests of lead inserted small-sized laminated rubber bearing for nuclear component seismic isolation", Appl. Sci., 11(10), p. 4431. https://doi.org/10.3390/app11104431
- Li, J., Li, Y., Li, W. and Samali, B. (2013), "Development of adaptive seismic isolators for ultimate seismic protection of civil structures", Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Vol. 8692, San Diego, CA, USA, March. https://doi.org/10.1117/12.2009626
- Li, H.N., Liu, M.M. and Fu, X. (2018), "An innovative recentering SMA-lead damper and its application to steel frame structures", Smart Mater. Struct., 27(7), p. 075029. https://doi.org/10.1088/1361-665X/aac28f.
- Li, S., Dezfuli, F.H., Alam, M.S. and Wang, J.Q. (2022), "Design, manufacturing, and performance evaluation of a novel smart roller bearing equipped with shape memory alloy wires", Smart Mater. Struct., 31(2), 25032. https://doi.org/10.1088/1361-665X/ac4690
- Liang, D., Zheng, Y., Fang, C., Yam, M.C. and Zhang, C. (2020), "Shape memory alloy (SMA)-cable-controlled sliding bearings: Development, testing, and system behavior", Smart Materials and Structures, 29(8), 85006. https://doi.org/10.1088/1361-665X/ab8f68
- Liu, Y. and J. Van Humbeeck. (1997), "On the damping behaviour of NiTi shape memory alloy", Le Journal de Physique IV, 7(5), C5-519. https://doi.org/10.1051/jp4:1997582
- Liu, Y., Wang, H., Qiu, C. and Zhao, X. (2019), "Seismic behavior of superelastic shape memory alloy spring in base isolation system of multi-story steel frame", Materials, 12(6), p. 997. https://doi.org/10.3390/ma12060997
- Memon, S.A., Zain, M., Zhang, D., Rehman, S.K.U., Usman, M. and Lee, D. (2020), "Emerging trends in the growth of structural systems for tall buildings", J. Struct. Integr. Maint., 5(3), 155-170. https://doi.org/10.1080/24705314.2020.1765270
- Omori, T. (2012), "Cu-Al-Mn Super-elastic Alloy Bars as Dissipative Brace System in Structural Steel Frame", Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE).
- Ozbulut, O.E. and Hurlebaus, S. (2011), "Optimal design of superelastic-friction base isolators for seismic protection of highway bridges against near-field earthquakes", Earthq. Eng. Struct. Dyn., 40(3), 273-291. https://doi.org/https://doi.org/10.1002/eqe.1022
- Pang, Y., He, W. and Zhong, J. (2021), "Risk-based design and optimization of shape memory alloy restrained sliding bearings for highway bridges under near-fault ground motions", Engineering Structures, 241, 112421. https://doi.org/10.1016/j.engstruct.2021.112421
- Qiu, C. and Zhu, S. (2017), "Shake table test and numerical study of self-centering steel frame with SMA braces", Earthq. Eng. Struct. Dy., 46(1), 117-137. https://doi.org/10.1002/eqe.2777
- Ramallo, J.C., Johnson, E.A., Spencer, B.F. and Sain, M.K. (2003), "Semi-active building base isolation", Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, USA. https://doi.org/10.1109/acc.1999.782881
- Shah, M.U. and Usman, M. (2022), "An experimental study of tuned liquid column damper controlled multi-degree of freedom structure subject to harmonic and seismic excitations", Plos one, 17(6), e0269910. https://doi.org/10.1371/journal.pone.0269910
- Shah, M.U., Usman, M., Farooq, S.H. and Kim, I.H. (2022a), "Effect of tuned spring on vibration control performance of modified liquid column ball damper", Appl. Sci., 12(1), 318. https://doi.org/10.3390/app12010318
- Shah, M.U., Usman, M., Farooq, S.H. and Rizwan, M. (2022b), "Spring-controlled modified tuned liquid column ball damper for vibration mitigation of structures", J. Sound Vib., 545, p. 117443. https://doi.org/10.1016/j.jsv.2022.117443
- Shi, F., Ozbulut, O.E. and Zhou, Y. (2020), "Influence of shape memory alloy brace design parameters on seismic performance of self-centering steel frame buildings", Struct. Control Health Monitor., 27(1), 1-18. https://doi.org/10.1002/stc.2462
- Shinozuka, M., Chaudhuri, S.R. and Mishra, S.K. (2015), "Shape-memory-alloy supplemented lead rubber bearing (SMA-LRB) for seismic isolation", Probabil. Eng. Mech., 41, 34-45. https://doi.org/10.1016/j.probengmech.2015.04.004
- Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
- Spencer, K., Hedayati Dezfuli, F. and Alam, M. (2017), "Design and Performance Evaluation of Shape Memory Alloy (SMA) Cross-Wire Configured High Damping Rubber Bearing", In: Leadership in Sustainable Infrastructure, pp. 1-10, Canadian Society for Civil Engineering; Vancouver, Canada.
- Tanveer, M., Usman, M., Khan, I.U., Ahmad, S., Hanif, A. and Farooq, S.H. (2019), "Application of tuned liquid column ball damper (TLCBD) for improved vibration control performance of multi-storey structure", PLoS One, 14(10), 1-15. https://doi.org/10.1371/journal.pone.0224436
- Tanveer, M., Usman, M., Khan, I.U., Farooq, S.H. and Hanif, A. (2020), "Material optimization of tuned liquid column ball damper (TLCBD) for the vibration control of multi-storey structure using various liquid and ball densities", J. Build. Eng., 32, 101742. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101742
- Ullah, M., Usman, M., Kim, I.H. and Dawood, S. (2022), "Analytical and experimental investigations on the performance of tuned liquid column ball damper considering a hollow ball", Struct. Eng. Mech., Int. J., 83(5), 655-669. https://doi.org/10.12989/sem.2022.83.5.655
- Usman, M. and Jung, H.J. (2015), "Recent developments of magneto-rheological elastomers for civil engineering applications", Smart Material Actuators: Recent Advances in Material Characterization and Application, Hauppauge, NY, USA.
- Varughese, K. and El-Hacha, R. (2020), "Design and behaviour of steel braced frame reinforced with NiTi SMA wires", Eng. Struct., 212, 110502. https://doi.org/10.1016/j.engstruct.2020.110502
- Wang, B., Zhu, S. and Casciati, F. (2020a), "Experimental study of novel self-centering seismic base isolators incorporating superelastic shape memory alloys", J. Struct. Eng., 146(7), 4020129. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002679
- Wang, J., Cao, Y., Xu, Y., Gu, X., Zhu, J. and Zhang, W. (2020b), "Finite element modeling of the damping capacity and vibration behavior of cellular shape memory alloy", Mech. Adv. Mater. Struct., 29(15), 2142-2155. https://doi.org/10.1080/15376494.2020.1852349
- Wang, B., Chen, P., Zhu, S. and Dai, K. (2023), "Seismic performance of buildings with novel self-centering base isolation system for earthquake resilience", Earthq. Eng. Struct. Dyn., 52(5), 1360-1380. https://doi.org/https://doi.org/10.1002/eqe.3820
- Wilde, K., Gardoni, P. and Fujino, Y. (2000), "Base isolation system with shape memory alloy device for elevated highway bridges", Eng. Struct., 22(3), 222-229. https://doi.org/10.1016/S0141-0296(98)00097-2
- Yan, S., Niu, J., Mao, P., Song, G. and Wang, W. (2013), "Experimental research on passive control of steel frame structure using SMA wires", Mathe. Problems Eng., 2013. https://doi.org/10.1155/2013/416282
- Zhang, B., Zeng, S., Tang, F., Hu, S., Zhou, Q. and Jia, Y. (2021), "Experimental and Numerical Analysis of the Mechanical Properties of a Pretreated Shape Memory Alloy Wire in a Self-Centering Steel Brace", Processes, 9(1), 1-15. https://doi.org/10.3390/pr9010080
- Zheng, W., Wang, H., Li, J. and Shen, H. (2020), "Parametric study of superelastic-sliding LRB system for seismic response control of continuous bridges", J. Bridge Eng., 25(9), 4020062. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001596
- Zheng, W.Z., Wang, H., Li, J. and Shen, H.J. (2021a), "Parametric study of SMA-based friction pendulum system for response control of bridges under near-fault ground motions", J. Earthq. Eng., 25(8), 1494-1512. https://doi.org/10.1080/13632469.2019.1582442
- Zheng, W., Wang, H., Hao, H. and Bi, K. (2021b), "Superelastic CuAlBe wire-based sliding lead rubber bearings for seismic isolation of bridges in cold regions", Eng. Struct., 247, 113102. https://doi.org/10.1016/j.engstruct.2021.113102
- Zheng, W., Tan, P., Li, J., Wang, H., Tan, J. and Sun, Z. (2022a), "Sliding-LRB incorporating superelastic SMA for seismic protection of bridges under near-fault earthquakes: A comparative study", Soil Dyn. Earthq. Eng., 155, 107161. https://doi.org/10.1016/j.soildyn.2022.107161
- Zheng, W., Tan, P., Liu, Y., Wang, H. and Chen, H. (2022b), "Multi-stage superelastic variable stiffness pendulum isolation system for seismic response control of bridges under near-fault earthquakes", Struct. Control Health Monitor., 29(12), 1-17. https://doi.org/10.1002/stc.3114
- Zheng, W., Tan, P., Zhang, Z., Wang, H. and Sun, Z. (2022c), "Damping enhanced novel re-centering seismic isolator incorporating superelastic SMA for response control of bridges under near-fault earthquakes", Smart Mater. Struct., 31(6), p. 065015. https://doi.org/10.1088/1361-665X/ac6b6a
- Zheng, W., Tan, P., Li, J., Wang, H., Liu, Y. and Xian, Z. (2023), "Superelastic pendulum isolator with multi-stage variable curvature for seismic resilience enhancement of cold-regional bridges", Eng. Struct., 284, 115960. https://doi.org/https://doi.org/10.1016/j.engstruct.2023.115960