참고문헌
- Abdul-Majeed, W.R., Jweeg M.J., Jameel, A.N. and Dpt, M.E. (2011), "Thermal buckling of rectangular plates with different temperature distribution using strain energy method", J. Eng., 17(5), 1047-1065. https://search.emarefa.net/detail/BIM-287653 https://doi.org/10.31026/j.eng.2011.05.02
- Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
- Adhikari, B. and Singh, B. N. (2020), "Buckling characteristics of laminated functionally-graded CNT-reinforced composite plate under nonuniform uniaxial and biaxial in-plane edge loads", Int. J. Struct. Stabil. Dyn., 20(2), 2050022, https://doi.org/10.1142/S0219455420500224.
- Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- Balubaid, M. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
- Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Bedia, E.A.A. and Tounsi A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Comp. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
- Belbachir, N., Draiche, K., Bousahla, A. A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Comp. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
- Belbachir, N., Bourada, M., Draiche, K., Tounsi, A., Bourada, F., Bousahla, A.A. and Mahmoud, S.R. (2020), "Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory", Smart Struct. Syst., 25(4), 409-422. https://doi.org/10.12989/sss.2020.25.4.409.
- Berghouti, H., Adda Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", J. Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
- Boutaleb, S., Benrahou, K. H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi A. and Mahmoud S.R. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", J. Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
- Boukhlif, Z. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Comp. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
- Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A.A. and Tounsi, A. (2020), "Buckling and Dynamic Behavior of the Simply Supported CNT-RC Beams Using an Integral-First shear Deformation Theory", Comp. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of - different configurations of FG sandwich plates", Smart Struct. Syst., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197.
- Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandwich Struct. Mater., 14(1), 5-33. doi.org/10.1177/1099636211426386.
- Cetkovic, M. and Gyorgy, L. (2016), "Thermo-elastic stability of angle-ply laminates application of layerwise finite elements", Struct. Integrity Life, 16(1), 43-48. http://grafar.grf.bg.ac.rs/handle/123456789/752.
- Cetkovic, M. (2016), "Thermal buckling of laminated composite plates using layerwise displacement model", Compos. Struct., 142, 238-253. https://doi.org/10.1016/j.compstruct.2016.01.082.
- Chen, C.S., Chen, W.R. and Lin, H.W. (2016), "Thermally induced stability and vibration of initially stressed laminated composite plates", Mech., 22(1), 51-58. https://doi.org/10.5755/j01.mech.22.1.8682.
- Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
- Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud S.R., Benrahou K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
- Chaabane, L.A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
- Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comp. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
- Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
- Fazzolri, F.A. and Carrera, E. (2014), "Thermal stability of FGM sandwich plates under various through the thickness temperature distributions", J. Therm. Stresses, 37(12), 1449-1481. https://doi.org/10.1080/01495739.2014.93751.
- Fazzolri, F.A. (2015), "Natural frequencies and critical temperatures of functionally graded sandwich plates subjected to uniform and non-uniform temperature distributions", Compos. Struct., 121, 197-210. https://doi.org/10.1016/j.compstruct.2014.10.039.
- Ghomshei, M.M.M. and Mahmoudi, A. (2010), "Thermal buckling analysis of cross-ply laminated rectangular plates under nonuniform temperature distribution: A differential quadrature approach", J. Mech. Sci. Tech., 24(12), 2519-2527. https://doi.org/10.1007/s12206-010-0918-y.
- Jameel, A.N., Sadiq, I.A. and Nsaif, H.I. (2012), "Buckling analysis of composite plates under thermal and mechanical loading", J. Eng., 18(12), 1365-1390.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta Mohammed, A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis", Comp. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comp., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
- Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28, 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
- Matsunaga, H. (2006), "Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory", Compos. Struct., 72, 177-192. https://doi.org/10.1016/j.compstruct.2004.11.016.
- Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, E.A.A. and Mahmoud S.R. (2017), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
- Majeed, W.I. and Sadiq I. A. (2018), "Buckling and pre stressed vibration analysis of laminated plates using new shear deformation", IOP Conf. Series: Mater. Sci. Eng., Istanbul, 454, 012006, https://doi:10.1088/1757-899X/454/1/012006.
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94, 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020.
- Narayana, D.A., Ganapathia, M., Pradyumnaa, B. and Haboussib, M. (2019), "Investigation of thermo-elastic buckling of variable stiffness laminated composite shells using finite element approach based on higher-order theory", Compos. Struct., 211. 24-40. https://doi.org/10.1016/j.compstruct.2018.12.012.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates Shells, CRC Press, USA.
- Refrafi, S., Bousahla, A. A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou, K. H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comp. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
- Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R., Benrahou K.H. and Tounsi A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comp. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
- Sahla, M. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
- Shiau, L.C., Kuo, S.Y. and Chen, C.Y. (2010), "Thermal buckling behavior of composite laminated plates", Compos. Struct., 92, 508-514. https://doi.org/10.1016/j.compstruct.2009.08.035.
- Sadiq, I.A. (2019), "Thermal buckling of angle-ply laminated plates using new displacement function", J. Eng., 25(12), 96-113. https://doi.org/10.31026/j.eng.2019.12.08.
- Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
- Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
- Xing, Y. and Wang, Z. (2017), "Closed form solutions for thermal buckling of functionally graded rectangular thin plates", Appl. Sci., 7(12), 1256-1274, https://doi.org/10.3390/app7121256.
- Vescovini, R., Ottavio, M.D., Dozio, L. and Polit, O. (2017), "Thermal buckling response of laminated and sandwich plates using refined 2-D models", Compos. Struct., 176, 313-328. http://dx.doi.org/10.1016/j.compstruct.2017.05.021.
- Zarga, D. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.