DOI QR코드

DOI QR Code

Optimization of productivity in the rehabilitation of building linked to BIM

  • Boulkenafet Nabil (Civil Engineering Department, Faculty of Technology, LMGHU Laboratory, University ) ;
  • Boudjellal Khaled (Civil Engineering Department, Faculty of Technology, LMGHU Laboratory, University ) ;
  • Bouabaz Mohamed (Civil Engineering Department, Faculty of Technology, LMGHU Laboratory, University )
  • Received : 2021.09.01
  • Accepted : 2023.05.09
  • Published : 2023.04.25

Abstract

In this paper, building information modelling (BIM) associated to the principle of significant items emerged at quantities and costs in the optimization of productivity related to the rehabilitation of the building where proposed and discussed. A quantitative and qualitative study related to the field of application based on some parameters such as pathology diagnosis, projects documents and bills of quantities were used for model development at the preliminary stage of this work. The study identified 14 quantities significant items specified to cost value based on the use of the 80/20 Pareto rule, through the integration of building information modelling (BIM) in the optimisation of labour productivity for rehabilitation of buildings. The results of this study reveal the reliability and the improvement of labour productivity using building information modelling process integrating quantities and cost significant items.

Keywords

Acknowledgement

This research was supported scientifically by the LMGHU Laboratory, Civil Engineering Department, University 20 Aout 1955- Skikda, Algeria and financially through the PRFU Project/code /A01L02UN210120220007, approved by the Ministry of Higher Education and Scientific Research.

References

  1. Abdel-Wahab, M. and Vogl, B. (2011), "Trends of productivity growth in the construction industry across Europe, US and Japan", Const. Manag. Econom., 29 (6), 635-644. https://doi.org/10.1080/01446193.2011.573568
  2. Adegoke, B.F., Oikelomen, B.O., Babatunde, L.A., Apata, C.O. and Ogunyemi, B.R. (2017), "The use of 80:20 Pareto rule: A guide in testing accuracy of cost estimating of residential buildings in Nigeria", Procedings of the International Conference of Science, Engineering & Environmental Technology (ICONSEET), 2(43), 330-340. https://doi.org/10.1080/01446193.2011.573568.
  3. Alaghbari, W., Al-Sakkaf, A.A. and Sultan, B. (2017), "Factors affecting construction labor productivity in Yemen", Int. J. Constr. Manag., 19(1), 79-91. https://doi.org/10.1080/15623599.2017.1382091.
  4. Arditi, D. and Mochtar, K. (1996), "Productivity improvement in the Indonesian construction industry", Constr. Manag. Econom., 14, 13-24. https://doi.org/10.1080/01446199600000003.
  5. Asif, M. (1988), "Simple generic models for cost-significant estimating of construction project costs", Ph.D., Thesis. The university of Dundee, Scotland, U.K.
  6. Boton, C., Kubicki, S. and Halin, G. (2015),"The challenge of level of development in 4D/BIM simulation across AEC project life cyle: A case study", Procedia Eng., 123, 59-67. https://doi.org/10.1016/j.proeng.2015.10.058.
  7. Bouabaz, M and Mordjaoui, M. (2012), "Project management using cost significant items and neural Network", Proceedings of the International Conference on Industrial Engineering and operations Management, Istanbul, Turkey, 2264-227.
  8. Bouabaz, M. and Horner, R.M.W. (1990), "Modelling and predicting bridge repair and maintenance costs". Bridge Manag., 187-197. https://doi.org/10.1007/978-1-4899-7232-3-16.
  9. Boughaba, A. and Bouabaz, M. (2020), "Identification and risk management related to construction projects", Adv. Comput. Des., 5(4), 445-465. http://doi:10.12989/acd.2020.5.4.445
  10. Bryde,D., Broquetas, M. and Volm, J.M. (2013), "The project benefits of building information modelling (BIM)", Int. J. Project Manag., 31 (7), 971-980. https://doi.org/10.1016/j.ijproman.2012.12.001.
  11. Casanovas, X. (2007), Methode RehabiMed. Architecture Traditional Mediterranean II. Rehabilitation des Batiments, RehabiMed (CAATEEB), Barcelona.
  12. Celnick, O., Lebeque, E. and Nagy, G. (2015), BIM et Maquette Numerique pour l'Architecture, Le Batiment et la Construction, Collection Eyrolles Architecture, France.
  13. Chigara, B. and Moyo, T. (2014), "Factors affecting labor productivity on building projects in Zimbabwe", Int. J. Arch. Eng. Constr., 3(1), 57-65. http://doi.org/10.7492/IJAEC.2014.005.
  14. David, A. and Krishna, M. (2000), "Trends in productivity improvement in the US construction industry", Constr. Manag. Econom., 18(1), 15-27. http://doi.org/10.1080/014461900370915.
  15. De Maestri, A. (2017), Premiers Pas en BIM, Collection blanche BTP, Eyrolles, AFNOR, France.
  16. Durdyev. S. and Mbachu. J. (2011), "On-site labor productivity of New Zealand construction industry: Key constraints and improvement measures", Australasian J. Constr. Econom. Build., 11(3), 18-33. https:// doi.org/10.5130/ajceb.v11i3.2120
  17. Eastman, C.M. (1995), "A generic building product model incorporating building type information", Automat. Constr., 3(4), 283-304. https://doi.org/10.1016/0926-5805(94)00028-L.
  18. Enshassi, A., Mohamed. S., Mustafa. Z.A. and Mayer, P.E. (2007), "Factors affecting labor productivity in building projects in the Gaza strip", J. Civil Eng. Manag., 13(4), 245-254. https://doi.org/10.1080/13923730.2007.9636444.
  19. Hafez, S.M., Aziz. R.F., Morgan. E.S., Abdullah. M.M. and Ahmed, E.K. (2014), "Critical factors affecting construction labor productivity in Egypt", Am. J. Civil Eng., 2(2), 35-40. https://doi.org/10.11648/j.ajce20140202.14.
  20. Handa, V.K. and Abdalla, O. (1989), "Forecasting productivity by work sampling", Constr. Manag. Econom., 7(1), 19-28. https://doi.org/10.1080/01446198900000003.
  21. Horner, M. and Zakieh, R. (1996), "Characteristic items - A new approach to pricing and controlling construction projects", Constr. Manage Econom., 14(3), 241-252. https://doi.org/10.1080/014461996373494.
  22. Horner, R.M.W., Talhouni. B. and Thomas, H.R. (1989), "Preliminary results of major labour productivity monitoring programme", Proceedings of the 3rd Yugoslavian Symposium on Construction Management, 18-28.
  23. Jarkas, A.M. and Bitar, C.G. (2012), "Factors Affecting construction labor productivity in Kuwait", J. Constr. Eng. Manag., 138(7), 811-820. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000501.
  24. Jarkas, A.M. and Horner, R.M.W. (2015), "Creating a baseline for labour productivity of reinforced concrete building construction in Kuwait", Constr. Manag. Econom., 33(8), 625-639. https://doi.org/10.1080/01446193.2015.1085651.
  25. Joblot, L. (2018), Contribution a la Mise en Oeuvre du BIM en Renovation: Proposition d ' un Modele de Maturite BIM Specifique, Ecole nationales d' arts et metiers - ENSAM, France.
  26. Joblot, L., Paviot, T., Deneux, D. and Lamouri, S. (2016), "Analyse du BIM applique a la renovation", 11th International Conference on Modeling, Optimization and Simulation (MOSIM 2016), Montreal. Canada.
  27. Joffroy, P. (1999), La Rehabilitation des Batiments Conserver. Ameliorer, Restructurer les Logements et les Equipements, Collection techniques de conception, Edite par Le Moniteur, France.
  28. Lim, E.C. and Alum. J. (1995), "Construction productivity", Issues Encountered by Contractors in Singapore, Int. J. Project Manag. Assoc., 13(1), 51-58. https://doi.org/10.1016/0263-7863(95)95704-H
  29. Mahamadu, A.M., Mahdjoubi, L., Booth. C., Manu. P. and Manu, E. (2019), "Building information modelling (BIM) capability and delivery success on construction projects", Constr. Innov., 19(2), 170-192. https://doi.org/10.1108/CI-03-2018-0016.
  30. Morledge, R. and Smith, A.J. (2013), Building Procurement, Wiley-Blackwell, U.S.A.
  31. Otmani, A., Bouabaz, M. and Al-Ha, A. (2020), "Predicting maintenance and rehabilitation cost for buildings based on artificial neural network and fuzzy logic", Int. J. Comput. Intell. Appl., 19 (1), 1-13. http// doi:10.1142/S1469026820500017.
  32. Rojas, E.M. and Aramvareekul, P. (2003), "Labor productivity drivers and opportunities in the construction industry", J. Manag. Eng., 19(2), 78-82. https//doi:10.1061/(asce)0742-597x(2003)19:2(78).
  33. Stankiewicz, F. (2002), "Productiviteou «valorite» du salarie? Contribution au debat sur le travail", Travail et Emploi, 91, 19.
  34. Stefan, M., Swaddle, P. and Philip, D. (2015), "Building Information Modeling", For Dummies, October.
  35. Succar, B., Sher, W. and Williams, A. (2012), "Measuring BIM performance: Five metrics", Arch. Eng. Des. Manag., 8(2), 120-142. http://doi.org/10.1080/17452007.2012.659506.
  36. Vogl, B. and Abdel-wahab, M. (2015), "Measuring the construction industry's productivity performance: Critique of international productivity comparisons at industry level", J. Constr. Eng. Manag., 141(4), 1-10. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000944.
  37. Wang, N. and Horner, M. (2007), "CSI model for estimating road maintenance projects", Constr. Manag. Econom., 25(12), 1269-1281. https://doi.org/10.1080/01446190701670373.
  38. Zhang, S., Teizer. J., Lee, J.K., Eastman, C.M. and Venugopal, M. (2013), "Building information modelling (BIM) and safety: automatic safety checking of construction models and schedules", Automat. Constr., 29, 183-195. https://doi.org/10.1016/j.autcon.2012.05.006.
  39. Zheng, X., Lu. Y., Li. Y., Le. Y. and Xiao, J. (2019), "Quantifying and visualizing value exchanges in building information modeling (bim) projects", Automat. Constr., 99, 91-108. https://doi.org/10.1016/j.autcon.2018.12.001.