DOI QR코드

DOI QR Code

Replacing C3S cement with PP fibre and nanobiosilica in stabilisation of organic clays

  • Received : 2022.02.04
  • Accepted : 2023.03.23
  • Published : 2023.05.25

Abstract

Organic clays are ideal habitat for flora and fauna. From a geotechnical perspective, organic clays are soft, weak, variable, heterogeneous and flocculated. Portland cement is a universally common stabiliser. However, some organic acids in soil inhibit full hydration and expose cementation products to rapid dissolution. This paper investigates scopes for use of C3S cement to enable durable cementation. Prospects of using PP fibre alongside with C3S cement, scopes for partial replacement of C3S cement with a plant-based nanosilica and evolution of binders are then investigated. Binding mixtures here mimic the natural functions of rhizoliths, amorphous phases, and calcites. Testing sample population include natural and fibre-reinforced clays, compact mixes of clay - C3S cement, clay - nanobiosilica, and clay, C3S cement and nanobiosilica. Benefits and constraints of C3S cement and fibres for retaining the naturally flocculated structure of organic clays are discussed. Nanobiosilica provides an opportunity to cut the C3S content, and to transition of highly compressive organic clays into an engineered, open-structured medium with >0.5 MPa compressive strength across the strains spanning from peak to 1.5-times peak.

Keywords

Acknowledgement

Authors would like to express thanks to the Geotechnical community of Urmia University, whom have been working on and documenting the many geoenvironmental aspects of peat across the Urmia Wetland, over the past years. This particular research is conducted independently and did not receive funding from any institution.

References

  1. Assadi-Langroudi, A., O'Kelly, B.C., Barreto, D., Cotecchia, F., Dicks, H., Ekinci, A., Garcia, F.E., Harbottle, M., Tagarelli, V., Jefferson, I. Maghoul, P., Masoero, E., El Mountassir, G., Muhunthan, B., Geng, X., Ghadr, S., Mirzababaei, M., Mitrani, H. and van Paassen, L. (2022), "Recent advances in nature-inspired solutions for ground engineering (NiSE)", Int. J. Geosynthetics Ground Eng., 8(1), 1-36. https://doi.org/10.1007/s40891-021-00349-9.
  2. Assadi Langroudi, A. (2014), "Micromechanics of collapse in loess", Ph.D. Dissertation, University of Birmingham, Birmingham.
  3. ASTM D2166 / D2166M-16 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International. West Conshohocken, PA, USA.
  4. ASTM D2216-19 (2019), Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM International. West Conshohocken, PA, USA.
  5. ASTM D420-18 (2018), Standard guide for site characterization for engineering design and construction purposes. ASTM International. West Conshohocken, PA, USA.
  6. ASTM D698 (2004), Standard test methods for laboratory compaction characteristics of soil using standard effort (12,400ft-lbf/ft3(600 kN-m/m3)). ASTM International, West Conshohocken, PA, USA.
  7. Axelsson, K., Johansson, S.E. and Anderson, R. (2002), "Stabilisation of organic soils by cement and pozzolanic reactions: Feasibility study", Swedish Deep Stabilisation Research Centre, Linkoping, Report 3, 15-16.
  8. Berti, D., Biscontin, G. and Lau, J. (2021), "Effect of biochar filler on the hydration products and microstructure in Portland cement-stabilized peat", J. Mater. Civil Eng., 33(10), 04021263. http://doi.org/10.1061/(ASCE)MT.1943-5533.0003885.
  9. Fatahi, B., Khabbaz, H. and Fatahi, B. (2012), "Mechanical characteristics of soft clay treated with fiber and cement", Geosynthetics Int., 19(3), 252-262. http://doi.org/10.1680/gein.12.00012.
  10. Ghadr, S., Assadi-Langroudi, A. and Hung, C. (2020), "Stabilisation of peat with colloidal nanosilica", Mires and Peat, 26(9), 13pp. http://doi.org/10.19189/MaP.2019.OMB.StA.1896.
  11. Harris, P., Harvey, O., Puppala, A.J., Sebesta, S., Chikyala, S.R. and Saride, S. (2009), "Mitigating the effects of organics in stabilized soils", Research Report No. FHWA/TX-09/0-5540-1; Department of Transportation, Texas.USA.
  12. Hassan, N., Hassan, W.H.W., Rashid, A.S.A., Latifi, N., Yunus, N.Z.M., Horpibulsuk, S. and Moayedi, H. (2019), "Microstructural characteristics of organic soils treated with biomass silica stabilizer", Environ. Earth Sci., 78(12), 1-9. http://doi.org/10.1007/s12665-019-8369-y.
  13. Hebib, S. and Farrell, R.E. (2003), "Some experiences on the stabilization of Irish peats", Can. Geotech. J., 40(1), 107-120. http://doi.org/10.1139/t02-091.
  14. Herzog, A. and Mitchell, J.K. (1963), "Reactions accompanying stabilization of clay with cement", Highway Research Record, (36).
  15. Huat, B.B., Prasad, A., Asadi, A. and Kazemian, S. (2019), "Geotechnics of organic soils and peat", CRC press. doi.org/10.1201/b15627.
  16. Jorat, M.E., Kreiter, S., Morz, T., Moon, V. and de Lange, W., (2013), "Strength and compressibility characteristics of peat stabilized with sand columns", Geomech. Eng., 5(6), 575-594. https://doi.org/10.12989/gae.2013.5.6.575.
  17. Kalantari, B. (2011), "Strength evaluation of air cured, cement treated peat with blast furnace slag", Geomech. Eng., 3(3), 207-218. https://doi.org/10.12989/gae.2011.3.3.207.
  18. Kalantari, B., Prasad, A. and Huat, B.B. (2010), "Peat stabilization using cement, polypropylene and steel fibres", Geomech. Eng., 2(4), 321-335. https://doi.org/10.12989/gae.2010.2.4.321.
  19. Kalantari, B. and Rezazade, R.K. (2015), "Compressibility behaviour of peat reinforced with precast stabilized peat columns and FEM analysis", Geomech. Eng., 9(4), 415-426. https://doi.org/10.12989/gae.2015.9.4.415.
  20. Kelts, K. and Shahrabi, M. (1986), "Holocene sedimentology of hypersaline Lake Urmia, northwestern Iran", Palaeogeogr. Palaeocl., 54(1-4), 105-130. https://doi.org/10.1016/0031-0182(86)90120-3.
  21. Kolay, P., and Aminur, M. (2011), "Physical and geotechnical characteristics of stabilized and unstabilized tropical peat soil", World J. Eng., 8(3), 223-230. https://doi.org/10.1260/1708-5284.8.3.223
  22. Lemos, S.G.P., Almeida, M.D.S.S., Consoli, N.C., Nascimento, T.Z. and Polido, U.F. (2020), "Field and laboratory investigation of highly organic clay stabilized with portland cement", J. Mater. Civil Eng., 32(4), 04020063. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003111.
  23. Latifi, N., Horpibulsuk, S., Meehan, C., Abd Majid, M.Z. and Rashid, A.S.A. (2016), "Xanthan gum biopolymer: an eco-friendly additive for stabilization of tropical organic peat", Environ. Earth Sci., 75(9), 825. https://doi.org/10.1007/s12665-016-5643-0.
  24. McDonald, P. and Cimino, D.J. (1984), "Settlement of low embankments on thick compressible soil", Proceedings of the 4th Australia - New Zealand Conference on Geomechanics. Perth, Australia, May.
  25. Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior, John Wiley & Sons, Hoboken, NJ, United States of America.
  26. Olson, R.E. (1998), "Settlement of embankments on soft clays: (The thirty-first terzaghi lecture)", J. Geotech. Geoenviron. Eng., 124(8), 659-669. https://doi.org/10.1061/ (ASCE) 1090-0241(1998) 124:8(659).
  27. Pan, Y., Rossabi, J., Pan, C. and Xie, X. (2019), "Stabilization/solidification characteristics of organic clay contaminated by lead when using cement", J. Hazard. Mater., 362, 132-139. https://doi.org/10.1016/j.jhazmat.2018.09.010.
  28. Paul, A. and Hussain, M. (2020), "Cement stabilization of Indian peat: an experimental investigation", J. Mater. Civil Eng., 32(11), 04020350. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003363.
  29. Rahgozar, M.A. and Saberian, M. (2016), "Geotechnical properties of peat soil stabilised with shredded waste tyre chips", Mires & Peat, 18, 1-16. https://doi.org/10.19189/MaP.2015.OMB.211.
  30. Saride, S., Puppala, A.J. and Chikyala, S.R. (2013), "Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays", Appl. Clay Sci., 85, 39-45. https://doi.org/10.1016/j.clay.2013.09.008.
  31. Schulz, S., Darehshouri, S., Hassanzadeh, E., Tajrishy, M. and Schuth, C. (2020), "Climate change or irrigated agriculture-what drives the water level decline of Lake Urmia", Sci. Rep., 10(1), 1-10. https://doi.org/10.1038/s41598-019-57150-y.
  32. Scott, D.A. (1995), A Directory of Wetlands in the Middle East, IUCN-The World Conservation Union, and the International Waterfowl and Wetlands Research Bureau, Slimbridge, United Kingdom.
  33. Stevenson, F.J. (1994), Humus Chemistry: Genesis, Composition, Reactions. John Wiley & Sons.
  34. Tashiro, M., Nguyen, S.H., Inagaki, M., Yamada, S. and Noda, T. (2015), "Simulation of large-scale deformation of ultra-soft peaty ground under test embankment loading and investigation of effective countermeasures against residual settlement and failure", Soils Found., 55(2), 343-358. https://doi.org/10.1016/j.sandf.2015.02.010.
  35. Tremblay, H., Duchesne, J., Locat, J. and Leroueil, S. (2002), "Influence of the nature of organic compounds on fine soil stabilization with cement", Can. Geotech. J., 39(3), 535-546. https://doi.org/10.1139/t02-002.
  36. van Olphen, H. (1977), An Introduction to Clay Colloid Chemistry, Wiley, New York, NY, USA.
  37. von Post, L. (1922), Sveriges geologiska undersoknings torvinventering och nagre av dess hittills vunna resultat, Sr. Mosskulturfor, 1, 1-27.
  38. Wong, L.S., Hashim, R. and Ali, F. (2013), "Utilization of sodium bentonite to maximize the filler and pozzolanic effects of stabilized peat", Eng. Geol., 152(1), 56-66. http://dx.doi.org/10.1016/j.enggeo.2012.10.019.
  39. Yadav, J.S. and Tiwari, S.K. (2016), "Behaviour of cement stabilized treated coir fiber-reinforced clay-pond ash mixtures", J. Build. Eng., 8, 131-140. https://doi.org/10.1016/j.jobe.2016.10.006.