DOI QR코드

DOI QR Code

Experimental study on the horizontal bearing characteristics of long-short-pile composite foundation

  • Chen-yu Lv (School of Civil Engineering, Zhengzhou University) ;
  • Yuan-cheng Guo (School of Civil Engineering, Zhengzhou University) ;
  • Yong-hui Li (School of Civil Engineering, Zhengzhou University) ;
  • An-di Hu-yan (School of Civil Engineering, Zhengzhou University) ;
  • Wen-min Yao (School of Civil Engineering, Zhengzhou University)
  • 투고 : 2022.06.07
  • 심사 : 2023.03.16
  • 발행 : 2023.05.25

초록

Long-short pile composite foundations bear both vertical and horizontal loads in many engineering applications. This study used indoor model tests to determine the horizontal bearing mechanism of a composite foundation with long and short piles under horizontal loads. A custom experimental device was developed to prevent excessive eccentricity of the vertical loading device caused by the horizontal displacement. ABAQUS software was used to analyze the influence of the load size and cushion thickness on the horizontal bearing mechanism. The results reveal that a large vertical load leads to soil densification and increases the horizontal bearing capacity of the composite foundation. The magnitude of the horizontal displacement of the pile and the horizontal load borne by the pile are related to the piles' positions. Due to different pile lengths, the long piles exhibit long pile effects and experience bending deformation, whereas the short piles rotate around a point (0.2 L from the pile bottom) as the horizontal load increases. Selecting a larger cushion thickness significantly improves the horizontal load sharing capacity of the soil and reduces the horizontal displacement of the pile top.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China [grant number 51508522] and the Cultivation Fund of Zhengzhou University in 2021 [grant number JC21439018].

참고문헌

  1. Cheng, X.S. and Jing, W. (2017), "Calculation models and stability of composite foundation treated with compaction piles", Geomech. Eng., 13(6), 929-946. https://doi.org/10.12989/gae.2017.13.6.929.
  2. Choo, Y.W. and Kim, D. (2016), "Experimental development of the p-y relationship for large-diameter offshore monopiles in sands: centrifuge tests", J. Geotech. Geoenviron. Eng., 142(1), 04015058. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001373.
  3. Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A., Kontoni, D.P.N. and Shokri-Amiri, M.(2021), "Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction", Geomech. Eng., 27(5), 465-479. https://doi.org/10.12989/gae.2021.27.5.465.
  4. Floravante, V. (2002), "On the shaft friction modelling of non-displacement piles in sand", Soil. Found., 42(2), 23-33. https://doi.org/10.3208/sandf.42.2_23.
  5. Garnier, J., Gaudin,C., Springman, S., Cullingan, S.M., Goodings, D., Konig, D., Kutter, B., Phillips, R., Randloph, M.F. and Thorel, L. (2017), "Catalogue of scaling laws and similitude questions in geotechni-cal centrifuge modeling", Int. J. Phys. Modell. Geotech., 7, 1-23. https://doi.org/10.1680/ijpmg.2007.070301.
  6. Gotman, A.L. and Sokolov, L.Y. (2018), "Lateral Load Analysis of a Composite Pile", Soil Mech. Found. Eng., 55(2), 103-109. https://doi.org/10.1007/s11204-018-9510-8.
  7. Guo, Y.C., Lv, C.Y. and Hou, S.Q. (2021), "Experimental study on the pile-soil synergistic mechanism of composite foundation with rigid long and short piles", Mathe. Problem. Eng., 6657116. https://doi.org/10.16285/j.rsm.2017.0068.
  8. Gupta, B.K. and Basu, D., (2017), "Analysis of laterally loaded short and long piles in multilayered heterogeneous elastic soil", Soil. Found., 57(1), 92-110. https://doi.org/10.1016/j.sandf.2017.01.007.
  9. Hazzar, L., Hussien, M.N. and Karray, M.(2017), "Influence of vertical loads on lateral response of pile foundations in sands and clays", J. Rock Mech. Geotech. Eng., 9(2), 291-304. https://doi.org/10.1016/j.jrmge.2016.09.002.
  10. Hong, Y., He, B. and Wang, L. (2017), "Cyclic lateral response and failure mechanisms of semi-rigid pile in soft clay: centrifuge tests and numerical modelling", Can. Geotech. J., 54(6), 806-824. https://doi.org/10.1139/cgj-2016-0356.
  11. Jeong, S., Park, J., Hong, M. and Lee, J (2017), "Variability of subgrade reaction modulus on flexible mat foundation", Geomech. Eng., 13(5), 757-774. https://doi.org/10.12989/gae.2017.13.5.757.
  12. Liu, P., Yang, G.H. and Fan, Z. (2016), "Experimental study on scale effect of rigid pile composite foundation", Chinese J. Rock Mech. Eng., 35(1), 187-200.
  13. Liu, W., Yang, X.H. and Chen, WZ. (2019), "Analysis of deformation characteristics of long-short pile composite foundation in salt lake area, Iran", Adv. Civil Eng., 5976540. https://doi.org/10.1155/2019/5976540.
  14. Lovera, A., Ghabezloo, S. and Sulem, J. (2021), "Pile response to multi-directional lateral loading using p-y curves approach", Geotechnique, 71(4), 288-298. https://doi.org/10.1680/jgeot.18.P.297.
  15. Mayoral, J.M., Pestana, J.M. and Seed, R.B. (2016), "Multi-directional cyclic p-y curves for soft clay", Ocean Eng., 115, 1-18. https://doi.org/ 10.1016/j.oceaneng.2016.01.033.
  16. Miao, L.C., Wang, F. and Lv, W.H. (2018), "A simplified calculation method for stress concentration ratio of composite foundation with rigid piles", KSCE J. Civil Eng., 22(9), 3263-3270. https://doi.org/10.1007/s12205-018-1558-5.
  17. Moayed, R.Z., Izadi, E. and Mirsepahi, M. (2013), "3D finite elements analysis of vertically loaded composite piled raft", J. Central South Univ., 20(6), 1713-1723. https://doi.org/10.1007/s11771-013-1664-y.
  18. Oh, D.W., Ahn, H.Y. and Lee, Y.J. (2018), "Behaviour of vertically and horizontally loaded pile and adjacent ground affected by tunnelling", Geomech. Eng., 15(3), 861-868. https://doi.org/10.12989/gae.2018.15.3.861.
  19. Poorjafar, A., Esmaeili-Falak, M. and Katebi, H. (2021), "Pile-soil interaction determined by laterally loaded fixed head pile group", Geomech. Eng., 26(1), 13-25. https://doi.org/10.12989/gae.2021.26.1.013
  20. Rahgooy, K., Bahmanpour, A., Derakhshandi, M. and Bagherzadeh-Khalkhali, A. (2022), "Distribution of elastoplastic modulus of subgrade reaction for analysis of raft foundations", Geomech. Eng., 28(1), 89-105. https://doi.org/10.12989/gae.2022.28.1.089.
  21. Ren, L.W., Yang, Q.W. and Kong, G.Q. (2021), "Model tests on Y-shaped piles under compressive and lateral loading in saturated sand", Geofluids, 6978602. https://doi.org/10.1155/2021/6978602.
  22. Vu, A.T., Matsumoto, T. and Pham, D.P. (2021), "Behaviours of batter-pile foundations subjected to combination of vertical load and cyclic horizontal loading", Int. J. Geotech. Eng., 12(5), 592-605. https://doi.org/10.1080/19386362.2021.1929696.
  23. Wang, C.D.; Zhou, S.H.;Wang, B.L. and Guo, P.J. (2018), "Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments", Geomech. Eng., 16(6), 589-597. https://doi.org/10.12989/gae.2018.16.6.589.
  24. Wang, F.C., Li, J. and Tian, P.P. (2022), "Research on hoop capacity of composite foundation of discarded rubber tires", Eur. J. Environ. Civil Eng., 26(2), 779-801. https://doi.org/10.1080/19648189.2019.1679671.
  25. Wang, Z.Z., Gong, W.M. and Xiao, G. (2018), "Field test on composite foundation with thick cushion and sand pile group", Rock Soil Mech., 39(10), 3755-3762. https://doi.org/10.16285/j.rsm.2017.0068.
  26. Wu, C.L., Yan, M.L. and Yang, J. (1996), "Properties of CFG pile and its composite foundation under horizontal load", Geotech. Investigation & Surveying, 4, 18-21.
  27. Xin, X., Kwag, Y. and Chun, B. (2013), "Study on settlement calculation of the long-short pile composite foundation", J. Korean Geoenviron. Soc., 14(7), 13-18. https://UCI : G704-SER000001652.2013.14.7.003. https://doi.org/10.14481/jkges.2013.14.12.013
  28. Zhang, X.L., Xue, J.Y. and Han, Y. (2021), "Model test study on horizontal bearing behavior of pile under existing vertical load", Soil Dynam. Earthq. Eng., 147, 106820. https://doi.org/10.1016/j.soildyn.2021.106820.