대뇌 신경 교종 18F-FDG PET/CT 검사에서 포도당 부하 기법에 대한 고찰

A Discussion on Glucose Loading Method in 18F-FDG PET/CTfor Cerebral Gliomas

  • 최용훈 (연세의료원 세브란스병원 핵의학과) ;
  • 박민수 (연세의료원 세브란스병원 핵의학과) ;
  • 임한상 (연세의료원 세브란스병원 핵의학과) ;
  • 김재삼 (연세의료원 세브란스병원 핵의학과)
  • Yong-Hoon Choi (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Min-Soo Park (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Han-Sang Lim (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System) ;
  • Jae-Sam Kim (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System)
  • 발행 : 2023.05.20

초록

Purpose The purpose of this study is to determine whether the glucose loading method (GLM) is useful in the differentiation of cerebral gliomas by comparing it with fasting images. Materials and Methods The patients were 70 people diagnosed with cerebral gliomas, and the equipment was Discovery 710 (GE Healthcare, MI, USA). All patients fasted for more than 6 hours, and fasting images and GLM were performed under the same imaging conditions, and the examination interval was 1 to 14 days. GLM administered 250 ㎖ of 10% glucose solution prior to radiopharmaceutical injection. SUVmax of cerebral glioma and SUVmean of cerebral cortex were measured and then compared and analyzed by tumor-to-normal brain cortex ratio (TNR). Statistical analysis confirmed the difference between the two images with an independent-sample t-test. Results The averages of GLM and fasting TNR were 1.26 and 1.09, respectively, which were 15.6% higher in GLM. In low-grade, the difference in TNR was insignificant at 4%, but in high-grade, 23%, GLM was high. There was a statistically significant difference between the two images (P=0.008), but there was no statistically significant difference in TNR in the low grade (P=0.473), and there was a very significant difference in the high grade (P=0.005). Conclusion GLM increased TNR for cerebral gliomas. In particular, it was found that the TNR increased more in the high grade. Therefore, GLM is considered to be useful for the differentiation of high-grade gliomas.

키워드

참고문헌

  1. Kim D, Kim S, Kim SH, Chang JH, Yun M. Prediction of overall survival based on isocitrate dehydrogenase 1 mutation and 18F-FDG uptake on PET/CT in patients with cerebral gliomas. Clin Nucl Med. 2018;43:311-6. https://doi.org/10.1097/RLU.0000000000002006
  2. Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H, et al. Metabolic assessment of gliomas using 11C-methionine, 18F-FDG, and 11C-choline positron-emission tomography. Am J Neuroradiol. 2008;29:1176-82. https://doi.org/10.3174/ajnr.A1008
  3. Chung JK, Kim YK, Kim SK, Lee YJ, Paek S, Yeo JS, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29:176-82. https://doi.org/10.1007/s00259-001-0690-4
  4. Kim D, Chun JH, Kim SH, Moon JH, Kang SG, Chang JH, et al. Re-evaluation of the diagnostic performance of 11C-methionine PET/CT according to the 2016 WHO classification of cerebral gliomas. Eur J Nucl Med Mol Imaging. 2019;46:1678-84. https://doi.org/10.1007/s00259-019-04337-0
  5. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol. 2008;10:1-18. https://doi.org/10.1007/s11307-007-0115-2
  6. Bangiyev L, Rossi Espagnet MC, Young R, Shepherd T, Knopp E, Friedman K, et al. Adult brain tumor imaging: State of the art. Semin Roentgenol. 2014;49:39-52. https://doi.org/10.1053/j.ro.2013.11.001
  7. Jansen EP, Dewit LG, van Herk M, Bartelink H. Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol. 2000;56:151-6. https://doi.org/10.1016/S0167-8140(00)00216-4
  8. Sarikaya I, Sarikaya A, Sharma P. Assessing effect of various blood glucose levels on 18F-FDG activity in the brain, liver and blood pool. J Nucl Med Technol. 2019;47(4):313-8. https://doi.org/10.2967/jnmt.119.226969
  9. Ishizu K, Nishizawa S, Yonekura Y, Sadato N, Magata Y, Tamaki N, et al. Effects of hyperglycemia on FDG uptake in human brain and glioma. J Nucl Med. 1994;35:1104-9.
  10. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885-95.
  11. Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328-54. https://doi.org/10.1007/s00259-014-2961-x
  12. Sprinz C, Altmayer S, Zanon M, Watte G, Irion K, Marchiori E, et al. Effects of blood glucose level on 18F-FDG uptake for PET/CT in normal organs: A systematic review. PLoS One. 2018;13:e0193140.