DOI QR코드

DOI QR Code

Monte-Carlo simulation for detecting neutron and gamma-ray simultaneously with CdZnTe half-covered by gadolinium film

  • J. Byun (Dept. of Health and Safety Convergence Science, Korea University) ;
  • J. Seo (Dept. of Health and Safety Convergence Science, Korea University) ;
  • Y. Kim (Interdisciplinary Program in Precision Public Health, Korea University) ;
  • J. Park (Dept. of Health and Safety Convergence Science, Korea University) ;
  • K. Shin (Dept. of Health and Safety Convergence Science, Korea University) ;
  • W. Lee (Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University) ;
  • K. Lee (Dept. of Health and Environmental Science, Korea University) ;
  • K. Kim (Dept. of Health and Environmental Science, Korea University) ;
  • B. Park (Dept. of Health and Safety Convergence Science, Korea University)
  • 투고 : 2022.09.17
  • 심사 : 2022.11.03
  • 발행 : 2023.03.25

초록

Neutron is an indirectly ionizing particle without charge, which is normally measured by detecting reaction products. Neutron detection system based on measuring gadolinium-converted gamma-rays is a good way to monitor the neutron because the representative prompt gamma-rays of gadolinium have low energies (79, 89, 182, and 199 keV). Low energy gamma-rays and their high attenuation coefficient on materials allow the simple design of a detector easier to manufacture. Thus, we designed a cadmium zinc telluride detector to investigate feasibility of simultaneous detection of gamma-rays and neutrons by using the Monte-Carlo simulation, which was divided into two parts; first was gamma-detection part and second was gamma- and neutron-simultaneous detection part. Consequently, we confirmed that simultaneous detection of gamma-rays and neutrons could be feasible and valid, although further research is needed for adoption on real detection.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2007376, 2021R1A2C1012161) and by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000070, Promoting of expert for energy industry advancement in the field of radiation technology).

참고문헌

  1. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010. 
  2. D. McGregor, J. Kindsay, R. Olsen, Thermal neutron detection with cadmium1-x zincx telluride semiconductor detectors, Nucl. Intrum. Meth. A. 381 (2-3) (1996) 498-501, https://doi.org/10.1016/S0168-9002(96)00580-3. 
  3. A. Miyake, T. Nishioka, S. Singh, H. Morii, H. Mimura, T. Aoki, A CdTe detector with a Gd converter for thermal neutron detection, Nucl. Intrum. Meth. A. 654 (1) (2011) 390-393, https://doi.org/10.1016/j.nima.2011.06.083. 
  4. H. Shiraki, M. Funaki, Y. Ando, A. Tachibana, S. Kominami, R. Ohno, THM growth and characterization of 100 mm diameter CdTe single crystals, IEEE Trans. Nucl. Sci. 56 (4) (2009) 1717-1723, https://doi.org/10.1109/TNS.2009.2016843. 
  5. K. Kim, S. Cho, J. Suh, J. Hong, S. Kim, Gamma-ray response of semi-insulating CdMnTe crystals, IEEE Trans. Nucl. Sci. 56 (3) (2009) 858-862, https://doi.org/10.1109/TNS.2009.2015662. 
  6. U.N. Roy, G.S. Camarda, Y. Cui, R. Gul, A. Hossain, G. Yang, J. Zazvorka, V. Dedic, J. Franc, R.B. James, Role of selenium addition to CdZnTe matrix for room-temperature radiation detector applications, Sci. Rep. 9.1 (2019) 1-7, https://doi.org/10.1038/s41598-018-38188-w. 
  7. J. Byun, J. Seo, J. Seo, B. Park, Growth and characterization of detector-grade CdMnTeSe, Nucl. Eng. Technol. (2022), https://doi.org/10.1016/j.net.2022.06.007. 
  8. K. Kim, S. Hwang, H. Yu, Y. Choi, Y. Yoon, A.E. Bolotnikof, R.B. James, Two-step annealing to remove Te secondary-phase defects in CdZnTe while preserving the high electrical resistivity, IEEE Trans. Nucl. Sci. 65 (8) (2018) 2333-2337, https://doi.org/10.1109/TNS.2018.2856805. 
  9. Y. Kim, T. Lee, W. Lee, Radiation measurement and imaging using 3D position sensitive pixelated CZT detector, Nucl. Eng. Technol. 51 (5) (2019) 1417-1427, https://doi.org/10.1016/j.net.2019.03.009. 
  10. Y. Kim, W. Lee, Development of a virtual Frisch-grid CZT detector based on the Array structure, J. Radiat. Prot. Res. 45 (1) (2020) 35-44, https://doi.org/10.14407/jrpr.2020.45.1.35. 
  11. J. Dumazert, R. Coulon, Q. Lecomte, G.H.V. Bertrand, M. Hamel, Gadolinium for neutron detection in current nuclear instrumentation research: a review, Nucl. Intrum. Meth. A. 882 (2018) 53-68, https://doi.org/10.1016/j.nima.2017.11.032. 
  12. E.M. Zsolnay, R. Capote Noy, H.J. Nolthenius, A. Trkov, Summary Description of the New International Reactor Dosimetry and Fusion File (IRDFF Release 1.0), International Atomic Energy Agency, No. INDC (NDS)-06162012, 2012. 
  13. J. Dumazert, R. Coulon, V. Kondrasovs, K. Boudergui, Compensation scheme for online neutron detection using a Gd-covered CdZnTe sensor, Nucl. Intrum. Meth. A. 857 (2017) 7-15, https://doi.org/10.1016/j.nima.2017.03.018.