DOI QR코드

DOI QR Code

Dose metrology: TLD/OSL dose accuracy and energy response performance

  • Omaima Essaad Belhaj (Radiations and Nuclear Systems Laboratory, Faculty of Sciences, University Abdelmalek Essaadi) ;
  • Hamid Boukhal (Radiations and Nuclear Systems Laboratory, Faculty of Sciences, University Abdelmalek Essaadi) ;
  • El Mahjoub Chakir (LPMS, Faculty of Sciences, Ibn Tofail University) ;
  • Meryeme Bellahsaouia (LPMS, Faculty of Sciences, Ibn Tofail University) ;
  • Siham Belhaj (ENA) ;
  • Younes Sadeq (LPMS, Faculty of Sciences, Ibn Tofail University) ;
  • Mohammed Tazi (SSDL, National Center of Radiation Protection (CNRP), Ministry of Health) ;
  • Tahar El Khoukhi (National Center for Energy, Science and Nuclear Technology (CNETSEN)) ;
  • Maryam Hadouachi (Radiations and Nuclear Systems Laboratory, Faculty of Sciences, University Abdelmalek Essaadi) ;
  • Khaoula Laazouzi (Radiations and Nuclear Systems Laboratory, Faculty of Sciences, University Abdelmalek Essaadi)
  • Received : 2022.03.03
  • Accepted : 2022.10.23
  • Published : 2023.02.25

Abstract

An essential step in evaluating and comparing the performance of two passive radiation dosimeter types, thermosluminescent (TLD) and optically stimulated luminescence (OSL), used by workers in environments with ionizing radiation for individual radiological monitoring and control of external exposure at various times (cumulative dose for 1 month), is to compare the measured dose accuracy, energy response, and coefficient of variation. In fact this performance study consists in determining the accuracy of both R(10) and R(0.07) which are considered as the ratios of the measured dose (Hp(10) or Hp(0.07)) to the delivered dose (Hp(10) or Hp(0.07)) for each photon energy. The validity of the results of this test is based on the acceptance limits of the ICRP and the international standard IEC-62387. The relative energy response used is normalized to the 137Cs 662 keV energy to find which energy response is closest to the ideal case, and the coefficient of variation that allows to determine the statistical fluctuation of the Hp(10) and Hp(0.07) doses. The results of the accuracy test for the OSL and TLD dosimeters are acceptable because they fall within the ICRP limits. For the energy response, the OSL performs better than the TLD for Hp(10) and Hp(0.07), and for the coefficient of variation, the OSL satisfies the requirements of ISO 62387 for both Hp(10) and Hp(0.07), while the TLD satisfies these requirements only for the measurement of Hp (0.07).

Keywords

References

  1. J. Barthe, B. Aubert, B. Bregeon, J. Champlong, Etat de l'art des techniques de dosimetrie individuelle et analyse des besoins *, 33, 1998, 4.
  2. BULLETIN OFFICIEL N° 6292 - 22 kaada 1435 (18-9-2014). Dahir n° 1-14-149 du 25 chaoual 1435 (22 aout 2014) portant promulgation de la loi n° 142-12 relative a la surete et a la securit e nucl eaires et radiologiques et a la creation de l'Agence marocaine de surete et de s ecurit e nucl eaires et radiologiques.
  3. Decret n° 2-97-30 du 25 joumada II 1418 (28 octobre 1997) pris pour l'application de la loi n° 005-71 du 21 chaabane 1391 (12 octobre 1971) relative a la protection contre les rayonnements. vol. 1418. pp. 1-29, 1997
  4. S.K. Omanwar, K.A. Koparkar, H.S. Virk, Recent advances and opportunities in tld materials: a review, Defect Diffusion Forum 347 (2014) 75-110, https://doi.org/10.4028/www.scientific.net/DDF.347.75.
  5. AGENCE INTERNATIONALE DE L'ENERGIE ATOMIQUE, Evaluation de l'exposition professionnelle due aux sources externes de rayonnements. Nº RS-G-1.3, Collection Normes de Surete de l'AIEA), 2004 [En ligne].
  6. Landauer, InLight System Reader. L. Inc, 2008, Glenwood
  7. A.B.A. Kadir, W. Priharti, S.B. Samat, M.T. Dolah, OSLD energy response performance and dose accuracy at 24-1250 keV: comparison with TLD-100H and TLD-100, AIP Conf. Proc. 1571 (December) (2013) 108-114, https://doi.org/10.1063/1.4858638, 2013.
  8. L.N. Thiem, B.D. Ky T. Van Giap, N.H. Quyet, Establishing Personal Dosimetry Procedure Using Optically Stimulated Luminescence Dosimeters in Photon and Mixed Photon - Neutron Radiation Fields, 2017, pp. 143-149.
  9. Thermo Fisher Scientific Inc, Thermo scientific Harshaw TLD materials and dosimeters, Therm. Sci. (2016) 1-4.
  10. W.L. Boyd, Using thermoluminescent dosimeters to measure the dose from high and low energy X-ray sources, UNLV Theses. Diss. Prof. Pap. Capstones. 5 (2009) 79.
  11. Thermoscientific, Harshaw model 6600 PLUS TLD reader operator's manual, Thermo Fish. Sci. Inc.. (2010).
  12. I. Systems. "X80 - X-Ray Beam Irradiator."
  13. Omaima Essaad Belhaj, Hamid Boukhal, Chakir El Mahjoub." ISO 4037:2019 validation of radiation qualities using the half-value layer at the national secondary standard dosimetry laboratory of Morocco". 10th JUBILEE INTERNATIONAL CONFERENCE ON RADIATION IN VARIOUS FIELDS OF RESEARCH (RAD 2022) SPRING EDITION. 13-17.06.2022. HUNGUEST HOTEL SUN RESORT. HERCEG NOVI. MONTENEGRO https://doi.org/10.21175/rad.spr.abstr.book.2022.30.5
  14. ISO 4037-1, Radiological protection-X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy-Part 1, Radiat. charact. Prod. Methods (2019).
  15. A. Hk, et al., Assessing the different types of thermoluminescence badges on Harshaw 6600 Plus reader, Int. J. At. Nucl. Phys. 4 (1) (2019), https://doi.org/10.35840/2631-5017/2516.
  16. D.S. Kim, K. Murayama, Y. Nurtazin, Y. Koguchi, Y. Kenzhin, H. Kawamura, Intercomparison exercise at Harshaw 6600. DVG-02TM. And D-shuttle dosimeters for the individual monitoring of ionizing radiation, J. Radiat. Prot. Res. 44 (2) (2019) 79-88, https://doi.org/10.14407/jrpr.2019.44.2.79.
  17. ICRP, ICRP Publication 60: Recommendations of the International Commission on Radiological Protection, ICRP, Oxford, 1991.
  18. IEC 62387, Radiation Protection Instrumentation - Passive Integrating Dosimetry Systems for Personal and Environmental Monitoring of Photon and Beta Radiation", 2012.
  19. M. Moscovitch, Y.S. Horowitz, Radiat. Meas. 41 (2006) S71-S77. https://doi.org/10.1016/j.radmeas.2007.01.008
  20. P. Olko, P. Bilski, M. Budzanowski, A. Molokanov, E. Ochab, M.P.R. Waligorski, Supralinearity of peak 4 and 5 in thermoluminescent lithium fluoride mts-n (lif:mg. ti) detectors at different mg and ti concentration, Radiat. Meas. 33 (5) (2001) 807-812, https://doi.org/10.1016/S1350-4487(01)00182-2.
  21. Omaima Essaad Belhaj, Mohamed Rabie Bricha, Meryeme bellahsaouia, Siham Belhaj, Chakir Elmahjoub, Hamid Boukhal, Tahar Elkhoukhi, Naoual Bentaleb, Ionizing radiation metrology at the service of health: quality control of radiopharmaceutical dose calibrators in nuclear medicine unit -accurarcy, reproducibility and linearity tests-, E3S Web Conf. 351 (January) (2022), 01095, https://doi.org/10.1051/e3sconf/202235101095.