Acknowledgement
The authors thank Mr. Jianqing Sun from the United Imaging Intelligence (Beijing) Co., Ltd. for providing us with software support and post-processing guidance.
References
- Schanzer A, Oderich GS. Management of abdominal aortic aneurysms. N Engl J Med 2021;385:1690-1698 https://doi.org/10.1056/NEJMcp2108504
- US Preventive Services Task Force. Screening for abdominal aortic aneurysm: US Preventive Services Task Force recommendation statement. JAMA 2019;322:2211-2218 https://doi.org/10.1001/jama.2019.18928
- Guirguis-Blake JM, Beil TL, Senger CA, Coppola EL. Primary care screening for abdominal aortic aneurysm: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 2019;322:2219-2238 https://doi.org/10.1001/jama.2019.17021
- Saratzis A, Bown MJ. The genetic basis for aortic aneurysmal disease. Heart 2014;100:916-922 https://doi.org/10.1136/heartjnl-2013-305130
- Hadjibashi AA, Mirocha J, Cossman DV, Gewertz BL. Decreases in diameters of treated abdominal aortic aneurysms and reduction in rupture rate. JAMA Surg 2013;148:72-75 https://doi.org/10.1001/archsurg.2012.1151
- Zhu C, Leach JR, Wang Y, Gasper W, Saloner D, Hope MD. Intraluminal thrombus predicts rapid growth of abdominal aortic aneurysms. Radiology 2020;294:707-713 https://doi.org/10.1148/radiol.2020191723
- Meyrignac O, Bal L, Zadro C, Vavasseur A, Sewonu A, Gaudry M, et al. Combining volumetric and wall shear stress analysis from CT to assess risk of abdominal aortic aneurysm progression. Radiology 2020;295:722-729 https://doi.org/10.1148/radiol.2020192112
- Li ZY, Sadat U, U-King-Im J, Tang TY, Bowden DJ, Hayes PD, et al. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion: a longitudinal followup study. Circulation 2010;122:1815-1822 https://doi.org/10.1161/CIRCULATIONAHA.110.939819
- MA3RS Study Investigators. Aortic wall inflammation predicts abdominal aortic aneurysm expansion, rupture, and need for surgical repair. Circulation 2017;136:787-797 https://doi.org/10.1161/CIRCULATIONAHA.117.028433
- Ye T, Zhang G, Liu H, Shi J, Qiu H, Liu Y, et al. Relationships between perivascular adipose tissue and abdominal aortic aneurysms. Front Endocrinol (Lausanne) 2021;12:704845
- Gaibazzi N, Tuttolomondo D, Nicolini F, Tafuni A, Sartorio D, Martini C, et al. The histopathological correlate of peri-vascular adipose tissue attenuation on computed tomography in surgical ascending aorta aneurysms: is this a measure of tissue inflammation? Diagnostics 2021;11:1799
- Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 2018;392:929-939 https://doi.org/10.1016/S0140-6736(18)31114-0
- Zhang S, Yu X, Gu H, Kang B, Guo N, Wang X. Identification of high-risk carotid plaque by using carotid perivascular fat density on computed tomography angiography. Eur J Radiol 2022;150:110269
- Kugo H, Zaima N, Tanaka H, Hashimoto K, Miyamoto C, Sawaragi A, et al. Pathological analysis of the ruptured vascular wall of hypoperfusion-induced abdominal aortic aneurysm animal model. J Oleo Sci 2017;66:499-506 https://doi.org/10.5650/jos.ess16219
- Dias-Neto M, Meekel JP, van Schaik TG, Hoozemans J, Sousa-Nunes F, Henriques-Coelho T, et al. High density of periaortic adipose tissue in abdominal aortic aneurysm. Eur J VascEndovasc Surg 2018;56:663-671 https://doi.org/10.1016/j.ejvs.2018.07.008
- Yamaguchi M, Yonetsu T, Hoshino M, Sugiyama T, Kanaji Y, Yasui Y, et al. Clinical significance of increased computed tomography attenuation of periaortic adipose tissue in patients with abdominal aortic aneurysms. Circ J 2021;85:2172-2180 https://doi.org/10.1253/circj.CJ-20-1014
- Montelione N, Sirignano P, d'Adamo A, Stilo F, Mansour W, Capoccia L, et al. Comparison of outcomes following EVAR based on aneurysm diameter and volume and their postoperative variations. Ann Vasc Surg 2021;74:183-193 https://doi.org/10.1016/j.avsg.2020.12.048
- Kitagawa A, Mastracci TM, von Allmen R, Powell JT. The role of diameter versus volume as the best prognostic measurement of abdominal aortic aneurysms. J Vasc Surg 2013;58:258-265 https://doi.org/10.1016/j.jvs.2013.05.001
- Tuttolomondo D, Martini C, Nicolini F, Formica F, Pini A, Secchi F, et al. Perivascular adipose tissue attenuation on computed tomography beyond the coronary arteries. A systematic review. Diagnostics (Basel) 2021;11:1495
- Mamopoulos AT, Freyhardt P, Touloumtzidis A, Zapenko A, Katoh M, Gabel G. Quantification of periaortic adipose tissue in contrast-enhanced CT angiography: technical feasibility and methodological considerations. Int J Cardiovasc Imaging 2022;38:1621-1633 https://doi.org/10.1007/s10554-022-02561-8
- Gaibazzi N, Sartorio D, Tuttolomondo D, Napolitano F, Siniscalchi C, Borrello B, et al. Attenuation of peri-vascular fat at computed tomography to measure inflammation in ascending aorta aneurysms. Eur J Prev Cardiol 2021;28:e23-e25 https://doi.org/10.1177/2047487320911846
- Riveros F, Martufi G, Gasser TC, Rodriguez-Matas JF. On the impact of intraluminal thrombus mechanical behavior in AAA passive mechanics. Ann Biomed Eng 2015;43:2253-2264 https://doi.org/10.1007/s10439-015-1267-x
- Hendy K, Gunnarson R, Golledge J. Growth rates of small abdominal aortic aneurysms assessed by computerised tomography--a systematic literature review. Atherosclerosis 2014;235:182-188 https://doi.org/10.1016/j.atherosclerosis.2014.04.021
- Houard X, Ollivier V, Louedec L, Michel JB, Back M. Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophil-derived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB J 2009;23:1376-1383 https://doi.org/10.1096/fj.08-116202
- Queiroz M, Sena CM. Perivascular adipose tissue in age-related vascular disease. Ageing Res Rev 2020;59:101040
- Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G,et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res 2009;104:541-549 https://doi.org/10.1161/CIRCRESAHA.108.182998
- Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 2017;174:3496-3513 https://doi.org/10.1111/bph.13705
- Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2873-2926 https://doi.org/10.1093/eurheartj/ehu281
- Golledge J, Moxon JV, Singh TP, Bown MJ, Mani K, Wanhainen A. Lack of an effective drug therapy for abdominal aortic aneurysm. J Intern Med 2020;288:6-22 https://doi.org/10.1111/joim.12958
- Chen JY, Wu YP, Li CY, Jheng HF, Kao LZ, Yang CC, et al. PPARγ activation improves the microenvironment of perivascular adipose tissue and attenuates aortic stiffening in obesity. J Biomed Sci 2021;28:22
- Kauffmann C, Tang A, Therasse E, Giroux MF, Elkouri S, Melanson P, et al. Measurements and detection of abdominal aortic aneurysm growth: accuracy and reproducibility of a segmentation software. Eur J Radiol 2012;81:1688-1694 https://doi.org/10.1016/j.ejrad.2011.04.044