DOI QR코드

DOI QR Code

Technological Trends in Safety Solutions for Construction Equipment

건설장비의 안전 솔루션 기술 동향

  • Received : 2023.03.30
  • Accepted : 2023.04.15
  • Published : 2023.06.01

Abstract

Negative perceptions of the construction industry are prevalent due to the high accident rate at construction sites. Recently, with the gradual change of the perception in industrial safety, the demand for improving the safety level of construction sites has increased. Accordingly, the government is preparing various safety-level measures such as the Serious Disaster Punishment Act and support for industrial safety management costs. In addition, private industries are incorporating various safety equipment in the sites. This paper introduced the current status of safety sensors and solutions currently applied to construction equipment and industrial vehicles. The technology development direction suitable for construction equipment was introduced by comparing the operating environment of automobiles and construction equipment. and the need to develop performance standards to protect and revitalize the market for safety devices for construction equipment was suggested.

Keywords

Acknowledgement

이 보고서는 국토교통부/국토교통과학기술진흥원의 지원을 받아 제작되었습니다. (과제번호 20SMIPA157130-01)

References

  1. K. J. Kim, "One in five deaths in the construction industry is the cause of construction machinery and equipment," Korea specialty contractors association, Dec. 21, 2021, https://www.koscaj.com/news/articleView.html?idxno=223733.
  2. S. G. Jeong, "Case Study of Construction Equipment Death Accident and Countermeasures," Critical Incident Issue Report, Korea Occupational Safety and Health Agency, Dec. 1, 2021.
  3. G. S. Gwak, D. G. Kim and S. H. Hwang, "Precision Localization of Vehicle using AVM Image and RTK GPS for Urban Driving," Journal of Drive and Control, Vol.17 No.4 pp.72-79, 2020. https://doi.org/10.7839/KSFC.2020.17.4.072
  4. D. J. Yeom, J. H. Seo, H. S. Yeom, H. S. Yoo and Y. S. Kim, "The development of around view monitoring system pilot type for construction equipment," Korean journal of construction engineering and management, Vol.17, No.3, pp.143-155, 2016. https://doi.org/10.6106/KJCEM.2016.17.3.143
  5. "AI-based next-generation Smart Excavator," HD Hyundai Construction Equipment Press Release, 2020, https://www.hyundai-ce.com/ko/innovation/ai.
  6. B. W. Jo, Y. S. Lee, D. K. Kim, J. H. Kim, and P. H. Choi, "Image-based proximity warning system for excavator of construction sites," The journal of the korea contents association, Vol.16, No.10. pp.588-597, 2016. https://doi.org/10.5392/JKCA.2016.16.10.588
  7. M. K. Seo, B. J. Yoon, H. Y. Shin and K. J. Lee, "Development of an Integrated Sensor Module for Terrain Recognition at Disaster Sites," Journal of Drive and Control, Vol.17 No.3 pp.9-14, 2020. https://doi.org/10.7839/KSFC.2020.17.3.009
  8. J. C. Kim, Y. J Kim, M. G. Kim and H. M. Lee, "Collision Avoidance Sensor System for Mobile Crane," Journal of Drive and Control, Vol.19 No.4 pp.62-69, 2022. https://doi.org/10.7839/KSFC.2022.19.4.062
  9. J. I. Lee, G.S. Gwak, K. S. Kim, W.Y. Kang D. Y. Shin and S. H. Hwang, "Development of Virtual Simulator and Database for Deep Learning-based Object Detection," Journal of Drive and Control, Vol.18, No.4, pp.9-18, 2021. https://doi.org/10.7839/KSFC.2021.18.4.009
  10. "Improved Detection Capabilities Create Safer Vehicles, News, Nov. 29, 2016, https://www.oemoffhighway.com/electronics/sensors/proximity-detection-safety-systems/article/20841041/object-detection-article.
  11. H. Y. Jeong, "INFOWORKS-Vixen, 4D LIDA New Product Launch," News, etnews, Nov. 8, 2022,  https://www.etnews.com/20221108000156
  12. "Cat® Rear Object Detection", Product catalog, 2022, https://www.cat.com.
  13. M. Todd and P. E. Ruff, "Mining Publication: Monitoring Blind Spots: A Major Concern for Haul Trucks", Centers for disease control and prevention, 2001.
  14. "Comparison of Bluetooth RTLS with other RTLS technologies such as RFID and UWB," News, People&Technology, Jan. 1, 2018,  https://pntbiz.co.kr/index.php/2018/01/16/023/.
  15. D. R. Kishore, "Comparing RTLS Tags: RFID vs BLE vs UWB vs Wi-Fi," News, Syook, 2022,  https://www.syook.com/post/comparing-rtls-tags-rfidvs-ble-vs-uwb-vs-wi-fi.
  16. K. S. Kim, S. H Hwang, J. I, Lee, S. W. Gwak, W. Y. Kang and D. Y Shin, "Construction of Database for Deep Learning-based Occlusion Area Detection in the Virtual Environment", Journal of Drive and Control, Vol.19, No.3, pp.9-15, 2022. https://doi.org/10.7839/KSFC.2022.19.3.009
  17. B. H. Jeon, "Trends and Implications of China's Artificial Intelligence Industry: China's AI Rise and Success Strategy", Trade Focus, Institute for international trade, Vol.23, 2021.
  18. K. Uchiyama, "Japan's Komatsu Selects NVIDIA as Partner for Deploying AI to Create Safer, More Efficient Construction Sites", NVIDIA Press Release, Dec. 12, 2017, https://nvidianews.nvidia.com/news/japans-komatsu-selects-nvidia-as-partner-for-deploying-ai-to-create-safermore-efficient-construction-sites.
  19. "The Amazing Ways John Deere Uses AI And Machine Vision To Help Feed 10 Billion People", News, Mar. 15, 2019, https://www.forbes.com/sites/bernardmarr/2019/03/15/t he-amazing-ways-john-deere-uses-ai-and-machine-visi on-to-help-feed-10-billion-people/?sh=48b963812ae9.
  20. J. H. Won, J. T. Jeon, Y. K. Hong, C. J. Yang, K. C. Kim, K. D. Kwon and G. H. Kim, "Study on Traveling Characteristics of Straight Automatic Steering Devices for Drivable Agricultural Machinery", Journal of Drive and Control, Vol.19, No.4, pp.19-28, 2022. https://doi.org/10.7839/KSFC.2022.19.4.019
  21. S. B. Shim and S. I. Choi, "Development on identification algorithm of risk situation around construction vehicle using YOLO-v3", Journal of the Korea academia-industrial cooperation society, Vol.20, No.7, pp.622-629, 2019. https://doi.org/10.5762/KAIS.2019.20.7.622
  22. M. Choinski, M. Rogowski, P. Tynecki, P. J. Kuijper, M. Churski and J. W. Bubnicki, "A first step towards automated species recognition from camera trap images of mammals using AI in a european temperate forest," CISIM 2021, LNCS 12883, pp. 299-310, 2021.
  23. K. Nakazawa, T. Eguchi and M. Machida, "KomVision Human Detection and Collision Mitigation System PC200-11, Komatus Technical Report, Vol.67, No.174, 2021.