DOI QR코드

DOI QR Code

Wave propagation along protein microtubule: Via strain gradient and orthotropic elastic model

  • Muhammad Taj (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Mohammad Amien Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Shahzad Ali Chattah (Department of Chemistry, Government College University Faisalabad) ;
  • Ikram Ahmad (Department of Chemistry, University of Sahiwal) ;
  • Sami Alghamdi (Electrical and Computer Engineering Department, King Abdulaziz University) ;
  • Muzamal Hussain (Department of Mathematics, University of Sahiwal) ;
  • Rana Muhammad Akram Muntazir (Department of Mathematics, Lahore Leads University) ;
  • Faisal Al-Thobiani (Marine Engineering Department, Faculty of Maritime Studies, King Abdulaziz University) ;
  • Muhammad Safeer (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Muhammad Naeem Mohsin (Institute for Islamic Theological Studies, University of Vienna) ;
  • Faisal Mehmood Butt (Department of Electrical Engineering, University of Azad Jammu and Kashmir) ;
  • Zafer Iqbal (Department of Mathematics, University of Sargodha)
  • Received : 2020.06.29
  • Accepted : 2024.05.10
  • Published : 2023.11.25

Abstract

Microtubules in the cell are influenced by internal and external stimulation and play an important part in conveying protein substances and in carrying out medications to the intended targets. Waves are produced during these functions and in order to control the biological cell functions, it is important to know the wave velocities of microtubules. Owing to cylindrical shell shaped and mechanically elastic and orthotropic, cylindrical shell model based on gradient elasticity theory has been used. Wave velocities of the protein microtubule are carried out by considering Love's thin shell theory and Navier solution. Also the effect of size parameter and other variables on the results are investigated.

Keywords

Acknowledgement

This research work was funded by Institutional Funds projects under grant no. (IFPIP: 776-135-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. (1994), Molecular Biology of the Cell, Garland Publishing Inc., New York, NY, USA. https://doi.org/10.1093/aob/mcg023
  2. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., Int. J., 6(6), 585-610. https://doi.org/10.12989/acc.2018.6.6.585
  3. Alwabli, A.S., Kaci, A., Bellifa, H., Bousahla, A.A., Tounsi, A., Alzahrani, D.A., Abulfaraj, A.A., Bourada, F., Benrahou, K.H., Tounsi, A. and Mahmoud, S.R. (2021), "The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory", Adv. Nano Res., Int. J., 10(1), 15-24. https://doi.org/10.12989/anr.2021.10.1.015
  4. Arefi, M. and Zenkour, A.M. (2017), "Nonlinear and linear thermo-elastic analyses of a functionally graded spherical shell using the Lagrange strain tensor", Smart Struct. Syst., Int. J., 19(1), 33-38. https://doi.org/10.12989/sss.2017.19.1.033
  5. Askes, H. and Aifantis, E.C. (2011), "Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results", Int. J. Solids Struct., 48(13), 1962-1990. https://doi.org/10.1016/j.ijsolstr.2011.03.006
  6. Aubertin, K., Tailleur, J., Wilhelm, C. and Gallet, F. (2017), "Impact of a mechanical shear stress on intracellular trafficking", Soft Matter, 13(31), 5298-5306. https://doi.org/10.1371/journal.pone.0084850
  7. Beni, Y.T. and Zeverdejani, M.K. (2015), "Free vibration of microtubules as elastic shell model based on modified couple stress theory", J. Mech. Med Biol., 15(03), 1550037. https://doi.org/10.1142/S0219519415500372
  8. Boal, D. (2002). Mechanics of the Cell Cambridge University Press. New York, Cambridge, UK.
  9. Cao, Q., Wang, R., Zhang, T., Wang, Y. and Wang, S. (2022), "Hydrodynamic modeling and parameter identification of a bionic underwater vehicle: RobDact", Cyborg Bionic Syst., 2022. https://doi.org/10.34133/2022/9806328
  10. Carter, N.J. and Cross, R. (2005), "Mechanics of the kinesin step", Nature, 435(7040), 308-312. https://doi.org/10.1038/nature03528
  11. Cifra, M., Pokorny, J., Havelka, D. and Kucera, O. (2010), "Electric field generated by axial longitudinal vibration modes of microtubule", Biosystems, 100(2), 122-131. https://doi.org/10.1016/j.biosystems.2010.02.007
  12. Damani, B., Fekrar, A., Selim, M.M., Benrahou, K.H., Benachour, A., Tounsi, A., Bedia, E.A. and Hussain, M. (2021), "Effect of material composition on bending and dynamic properties of FG plates using quasi 3D HSDT", Struct. Eng. Mech., Int. J., 78(4), 439-453. https://doi.org/10.12989/sem.2021.78.4.439
  13. Daneshmand, F., Ghavanloo, E. and Amabili, M. (2011), "Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations", J. Biomech., 44(10), 1960-1966. https://doi.org/10.1016/j.jbiomech.2011.05.003
  14. Das, M., Levine, A.J. and MacKintosh, F. (2008), "Buckling and force propagation along intracellular microtubules", EPL (Europhys. Lett.), 84(1), 18003. http://dx.doi.org/10.1101/262089
  15. de Pablo, P.J., Schaap, I.A., MacKintosh, F.C. and Schmidt, C.F. (2003), "Deformation and collapse of microtubules on the nanometer scale", Phys. Rev. Lett., 91(9), 098101. https://doi.org/10.1103/PhysRevLett.91.098101
  16. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., Int. J., 7(2), 65-74. https://doi.org/10.12989/acc.2019.7.2.065
  17. Dong, Z., Li, X., Yamaguchi, H. and Yu, P. (2024), "Magnetic field effect on the sedimentation process of two non-magnetic particles inside a ferrofluid", J. Magnet. Magnet. Mater, 589, 171501. https://doi.org/10.1016/j.jmmm.2023.171501
  18. Feng, J., Wang, W. and Zeng, H.B. (2024), "Integral sliding mode control for a class of nonlinear multiagent systems with multiple time-varying delays", IEEE Access, 12, 10512-10520. https://doi.org/10.1109/ACCESS.2024.3354030
  19. Fernandez, J.D. and Vico, F.J. (2011), "Automating the search of molecular motor templates by evolutionary methods", Biosystems, 106(2-3), 82-93. https://doi.org/10.1016/j.biosystems.2011.07.002
  20. Fleck, N., Muller, G., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Metallurgica et materialia, 42(2), 475-487. https://doi.org/10.1016/j.ijsolstr.2005.05.026
  21. Fu, Z.H., Yang, B.J., Shan, M.L., Li, T., Zhu, Z.Y., Ma, C.P., Zhang, X., Gou, G.Q., Wang, Z.R. and Gao, W. (2020), "Hydrogen embrittlement behavior of SUS301L-MT stainless steel laser-arc hybrid welded joint localized zones", Corros. Sci., 164, 108337. https://doi.org/10.1016/j.corsci.2019.108337
  22. Fu, Y., Liu, Y., Wang, J., Wang, Y., Xu, G.,... Wen, J. (2024), "Local resistance characteristics of elbows for supercritical pressure RP-3 flowing in serpentine micro-tubes", Propuls. Power Res. https://doi.org/10.1016/j.jppr.2023.02.009
  23. Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E: Low-Dimens. Syst. Nanostr., 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022
  24. Garcia, J., Campos, J., Lizaur, P. and Pablo, C. (2003), "El talento deportivo", Formacion de elites deportivas", Madrid: Gymnos. https://doi.org/10.5672/apunts.2014-0983.cat.(2016/1).123.00
  25. Gittes, F., Mickey, B., Nettleton, J., and Howard, J. (1993), "Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape", J. Cell Biol., 120(4), 923-934. https://doi.org/10.1083/jcb.120.4.923
  26. Gong, Q., Cai, M., Gong, Y., Chen, M., Zhu, T. and Liu, Q. (2024), "Grinding surface and subsurface stress load of nickel-based single crystal superalloy DD5", Precis. Eng., 88, 354-366. https://doi.org/10.1016/j.precisioneng.2024.02.017
  27. Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A., Tounsi, A., Al-Zahrani, M.M., Hussain, M. and Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., Int. J., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001
  28. Guo, J., Ding, B., Wang, Y. and Han, Y. (2023), "Co-optimization for hydrodynamic lubrication and leakage of V-shape textured bearings via linear weighting summation", Physica Scripta, 98(12), 125218. https://doi.org/10.1088/1402-4896/ad07be
  29. Han, Q., Li, X. and Chu, F. (2018), "Skidding behavior of cylindrical roller bearings under time-variable load conditions", Int. J. Mech. Sci., 135, 203-214. https://doi.org/10.1016/j.ijmecsci.2017.11.013
  30. Howard, J. (2001), "Mechanics of motor proteins and the cytoskeleton", Appl. Mech. Res., 55(2), B39-B39. https://doi.org/10.1115/1.1451234
  31. Howard, J. and Hyman, A.A. (2003), "Dynamics and mechanics of the microtubule plus end", Nature, 422(6933), 753-758. https://doi.org/10.1038/nature01600
  32. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., Int. J., 3(1), 39-54. https://doi.org/10.12989/acc.2015.3.1.039
  33. Kasas, S., Cibert, C., Kis, A., De Los Rios, P., Riederer, B.M., Forro, L., Dietler, G. and Catsicas, S. (2004), "Oscillation modes of microtubules", Biol. Cell, 96(9), 697-700. https://doi.org/10.1016/j.biolcel.2004.09.002
  34. Khadimallah, M.A., Hussain, M., Khedher, K.M., Bouzgarrou, S.M., Al Naim, A.F., Naeem, M.N., Taj, M., Iqbal, Z. and Tounsi, A. (2020a), "Vibration of SWCNTs: Consistency and behavior of polynomial law index with Galerkin's model", Adv. Nano Res., Int. J., 9(4), 251-261. https://doi.org/10.12989/anr.2020.9.4.251
  35. Khadimallah, M.A., Safeer, M., Taj, M., Ayed, H., Hussain, M., Bouzgarrou, S.M., Mahmoud, S.R., Ahmad, M. and Tounsi, A. (2020b), "The effects of the surrounding viscoelastic media on the buckling behavior of single microfilament within the cell: A mechanical model", Adv. Concrete Constr., Int. J., 10(2), 141-149. https://doi.org/10.12989/acc.2020.10.2.141
  36. Kuang, W., Wang, H., Li, X., Zhang, J., Zhou, Q. and Zhao, Y. (2018), "Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications", Acta Materialia, 159, 16-30. https://doi.org/10.1016/j.actamat.2018.08.008
  37. Lam, D.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1177/1081286508097638
  38. Li, X., Yu, P., Niu, X., Yamaguchi, H., and Li, D. (2020), "Non-contact manipulation of nonmagnetic materials by using a uniform magnetic field: Experiment and simulation", J. Magnet. Magnet. Mater., 497, 165957. https://doi.org/10.1016/j.jmmm.2019.165957
  39. Li, J., Wang, Z., Zhang, S., Lin, Y., Wang, L., Sun, C. and Tan, J. (2023), "A novelty mandrel supported thin-wall tube bending cross-section quality analysis: a diameter-adjustable multi-point contact mandrel", Int. J. Adv. Manuf. Technol., 124(11), 4615-4637. https://doi.org/10.1007/s00170-023-10838-y
  40. Liu, W., Bai, X., Yang, H., Bao, R. and Liu, J. (2024), "Tendon driven bistable origami flexible gripper for high-speed adaptive grasping", IEEE Robot. Automat. Lett., 9(6), 5417-5424. https://doi.org/10.1109/LRA.2024.3389413
  41. Long, X., Chong, K., Su, Y., Du, L. and Zhang, G. (2023), "Connecting the macroscopic and mesoscopic properties of sintered silver nanoparticles by crystal plasticity finite element method", Eng. Fract. Mech., 281, 109137. https://doi.org/10.1016/j.engfracmech.2023.109137
  42. Lopez-Huertas, M.R., Callejas, S., Abia, D., Mateos, E., Dopazo, A., Alcami, J. and Coiras, M. (2010), "Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon", Nucleic Acids Res., 38(10), 3287-3307. https://doi.org/10.1093/nar/gkq037
  43. Meksi, A., Benyoucef, S., Sekkal, M., Bouiadjra, R.B., Selim, M.M., Tounsi, A. and Hussain, M. (2021), "Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading", Steel Compos. Struct., Int. J., 39(2), 215-228. https://doi.org/10.12989/scs.2021.39.2.215
  44. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., Int. J., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539
  45. Nogales, E. (2001), "Structural insights into microtubule function", Annual Rev. Biophys. Biomolecul. Struct., 30(1), 397-420. https://doi.org/10.1146/annurev.biophys.30.1.397
  46. Pampaloni, F. and Florin, E.-L. (2008), "Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials", Trends Biotechnol., 26(6), 302-310. https://doi.org/10.1016/j.tibtech.2008.03.002
  47. Pokorny, J. (2001), "Endogenous electromagnetic forces in living cells: implications for transfer of reaction components", Electro-Magnetobiol., 20(1), 59-73. https://doi.org/10.1081/JBC-100103160
  48. Qian, X., Zhang, J. and Ru, C. (2007), "Wave propagation in orthotropic microtubules", J. Appl. Phys., 101(8), 084702. https://doi.org/10.1063/1.5086216
  49. Rebai, B., Bouhadra, A., Bousahla, A.A., Meradjah, M., Bourada, F., Tounsi, A., Tounsi, A. and Hussain, M. (2021), "Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT", Arch. Appl. Mech., 91(7), 3403-3420. https://doi.org/10.1007/s00419-021-01973-7
  50. Safeer, M., Khadimallah, M.A., Taj, M., Hussain, M., Elaloui, E. and Tounsi, A. (2021), "Strength performance with buckling analysis of Intermediate filaments by consideration nonlocal parameters", Comput. Concrete, Int. J., 28(1), 69-75. https://doi.org/10.12989/cac.2021.28.1.069
  51. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., Int. J., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043
  52. Shen, H.-S. (2011), "Nonlinear vibration of microtubules in living cells", Current Appl. Phys., 11(3), 812-821. https://doi.org/10.1177/0954406212445151
  53. Shi, Y., Guo, W. and Ru, C. (2008), "Relevance of Timoshenko-beam model to microtubules of low shear modulus", Physica E: Low-Dimens. Syst. Nanostr., 41(2), 213-219. https://doi.org/10.1016/j.physe.2008.06.025
  54. Sun, L., Liang, T., Zhang, C. and Chen, J. (2023), "The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite", Phys. Fluids, 35(3), 32002. https://doi.org/10.1063/5.0138294
  55. Sun, L., Wang, G. and Zhang, C. (2024), "Experimental investigation of a novel high performance multi-walled carbon nano-polyvinylpyrrolidone/silicon-based shear thickening fluid damper", J. Intell. Mater. Syst. Struct., 35(6), 661-672. https://doi.org/10.1177/1045389X23122299
  56. Taj, M. and Zhang, J. (2014), "Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model", J. Mech. Behav. Biomed. Mater., 30, 300-305. https://doi.org/10.1016/j.jmbbm.2013.11.011
  57. Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Ahmad, M., Abbas, K., Khan, A.Q. and Tounsi, A. (2020), "Effect of external force on buckling of cytoskeleton intermediate filaments within viscoelastic media", Comput. Concrete, Int. J., 25(3), 205-214. https://doi.org/10.12989/cac.2020.25.3.205
  58. Taj, M., Khadimallah, M.A., Hussain, M., Mahmood, S., Safeer, M., Al Naim, A.F. and Ahmad, M. (2021), "Confinement effectiveness of Timoshenko and Euler Bernoulli theories on buckling of microfilaments", Adv. Concrete Constr., Int. J., 11(1), 81-88. https://doi.org/10.12989/acc.2021.11.1.081
  59. Tuszynski, J., Luchko, T., Portet, S. and Dixon, J. (2005), "Anisotropic elastic properties of microtubules", Eur. Phys. J. E, 17(1), 29-35. https://doi.org/10.1140/epje/i2004-10102-5
  60. Wang, C., Ru, C. and Mioduchowski, A. (2006), "Vibration of microtubules as orthotropic elastic shells", Physica E: Low-Dimens. Syst. Nanostr., 35(1), 48-56. https://doi.org/10.1155/2014
  61. Wang, W., Jin, Y., Mu, Y., Zhang, M. and Du, J. (2023a), "A novel tubular structure with negative Poisson's ratio based on gyroid-type triply periodic minimal surfaces", Virtual Phys. Prototyp., 18(1), e2203701. https://doi.org/10.1080/17452759.2023.2203701
  62. Wang, C., Wang, Z., Zhang, S., Liu, X. and Tan, J. (2023b), "Reinforced quantum-behaved particle swarm-optimized neural network for cross-sectional distortion prediction of novel variable-diameter-die-formed metal bent tubes", J. Computat. Des. Eng., 10(3), 1060-1079. https://doi.org/10.1093/jcde/qwad037
  63. Watanabe, T., Noritake, J. and Kaibuchi, K. (2005), "Regulation of microtubules in cell migration", Trends Cell Biol., 15(2), 76-83. https://doi.org/10.1016/j.tcb.2004.12.006
  64. Yang, S., Zhang, Y., Sha, Z., Huang, Z., Wang, H., Wang, F. and Li, J. (2022), "Deterministic manipulation of heat flow via three-dimensional-printed thermal meta-materials for multiple protection of critical components", ACS Appl. Mater. Interf., 14(34), 39354-39363. https://doi.org/10.1021/acsami.2c09602
  65. Yang, W., Jiang, X., Tian, X., Hou, H. and Zhao, Y. (2023), "Phase-field simulation of nano-α' precipitates under irradiation and dislocations", J. Mater. Res. Technol., 22, 1307-1321. https://doi.org/10.1016/j.jmrt.2022.11.165
  66. Zhang, G., Yang, Z., Li, X., Deng, S., Liu, Y., Zhou, H., Peng, M., Fu, Z., Chen, R., Meng, D. and Zhong, L. (2024), "Gamma-Ray Irradiation Induced Dielectric Loss of SiO2/Si Heterostructures in Through-Silicon Vias (TSVs) by Forming Border Traps", ACS Appl. Electron. Mater., 6(2), 1339-1346. https://doi.org/10.1021/acsaelm.3c01646
  67. Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Process. Technol., 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022
  68. Zhu, S., Li, X., Bian, Y., Dai, N., Yong, J., Hu, Y., Li, J., Wu, D. and Chu, J. (2023), "Inclination-enabled generalized microfluid rectifiers via anisotropic slippery hollow tracks", Adv. Mater. Technol., 8(16), 2300267. https://doi.org/10.1002/admt.202300267