DOI QR코드

DOI QR Code

Genetic algorithm-based geometric and reinforcement limits for cost effective design of RC cantilever retaining walls

  • Mansoor Shakeel (Department of Civil Engineering, University of Engineering and Technology) ;
  • Rizwan Azam (Department of Civil Engineering, University of Engineering and Technology) ;
  • Muhammad R. Riaz (Department of Civil Engineering, University of Engineering and Technology)
  • Received : 2022.01.15
  • Accepted : 2023.03.27
  • Published : 2023.05.10

Abstract

The optimization of reinforced concrete (RC) cantilever retaining walls is a complex problem and requires the use of advanced techniques like metaheuristic algorithms. For this purpose, an optimization model must first be developed, which involves mathematical complications, multidisciplinary knowledge, and programming skills. This task has proven to be too arduous and has halted the mainstream acceptance of optimization. Therefore, it is necessary to unravel the complications of optimization into an easily applicable form. Currently, the most commonly used method for designing retaining walls is by following the proportioning limits provided by the ACI handbook. However, these limits, derived manually, are not verified by any optimization technique. There is a need to validate or modify these limits, using optimization algorithms to consider them as optimal limits. Therefore, this study aims to propose updated proportioning limits for the economical design of a RC cantilever retaining wall through a comprehensive parametric investigation using the genetic algorithm (GA). Multiple simulations are run to examine various design parameters, and trends are drawn to determine effective ranges. The optimal limits are derived for 5 geometric and 3 reinforcement variables and validated by comparison with their predecessor, ACI's preliminary proportioning limits. The results indicate close proximity between the optimized and code-provided ranges; however, the use of optimal limits can lead to additional cost optimization. Modifications to achieve further optimization are also discussed. Besides the geometric variables, other design parameters not covered by the ACI building code, like reinforcement ratios, bar diameters, and material strengths, and their effects on cost optimization, are also discussed. The findings of this investigation can be used by experienced engineers to refine their designs, without delving into the complexities of optimization.

Keywords

References

  1. ACI (2015), The Reinforced Concrete Design Handbook: A Companion to ACI 318-14, 9th Edition, American Concrete Institute, Farmington Hills, MI, USA.
  2. ACI 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318-14R), American Concrete Institute, Farmington Hills, MI, USA.
  3. Afzal, M., Liu, Y., Cheng, J.C.P. and Gan, V.J.L. (2020), "Reinforced concrete structural design optimization: A critical review", J. Clean. Prod., 260, 120623. https://doi.org/10.1016/j.jclepro.2020.120623.
  4. Aral, S., Bekdas, G. and Nigdeli, S.M. (2022), "Comparative study on optimization of cantilever retaining walls via several metaheuristics", Proceedings of 7th International Conference on Harmony Search, Soft Computing and Applications: ICHSA, Seoul, South Korea, February.
  5. Arora, J.S. (2012), Introduction to Optimum Design, 3rd Edition, Academic Press, Waltham, MA, USA.
  6. Ashraf, S.M. (2018), Practical Design of Reinforced Concrete Buildings, CRC Press, Boca Raton, FL, USA.
  7. Azam, R., Riaz, M.R., Farooq, M.U., Ali, F., Mohsan, M., Deifalla, A.F. and Mohamed, A.M. (2022), "Optimization-based economical flexural design of singly reinforced concrete beams: a parametric study", Mater., 15(9), 3223. https://doi.org/10.3390/ma15093223.
  8. Bhatti, M.A. (2006), "Retaining wall design optimization with MS Excel Solver", Proceedings of the 17th Analysis and Computation Specialty Conference, St. Louis, USA, May.
  9. Brooks, H. and Nielsen, J.P. (2013), Basics of Retaining Wall Design: A Design Guide for Earth Retaining Structures, 10th Edition, HBA Publications, Newport Beach, CA, USA.
  10. Camp, C.V. and Akin, A. (2012), "Design of retaining walls using big bang-big crunch optimization", J. Struct. Eng., 138(3), 438-448. https://doi.org/10.1061/(asce)st.1943-541x.0000461.
  11. Ceranic, B., Fryer, C. and Baines, R.W. (2001), "An application of simulated annealing to the optimum design of reinforced concrete retaining structures", Comput. Struct., 79(17), 1569-1581. https://doi.org/10.1016/S0045-7949(01)00037-2.
  12. Chau, K.W. and Albermani, F. (2003), "Knowledge-based system on optimum design of liquid retaining structures with genetic algorithms", J. Struct. Eng., 129(10), 1312-1321. https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1312).
  13. Dagdeviren, U. and Kaymak, B. (2020), "A regression-based approach for estimating preliminary dimensioning of reinforced concrete cantilever retaining walls", Struct. Multidisc. Optim., 61, 1657-1675. https://doi.org/10.1007/s00158-019-02470-w.
  14. Dede, T., Kripka, M., Togan, V., Yepes, V. and Rao, R.V. (2019), "Usage of optimization techniques in civil engineering during the last two decades", Curr. Trend. Civil Struct. Eng., 2(1), 1-17. https://doi.org/10.33552/ctcse.2019.02.000529.
  15. Dodigovic, F., Ivandic, K., Jug, J. and Agnezovic, K. (2021), "Multi-objective optimization of retaining wall using genetic algorithm", Environ. Eng.-Inzenjerstvo Okolisa, 8(1-2), 58-65. https://doi.org/10.37023/ee.8.1-2.8.
  16. Gan, V.J.L., Lo, I.M.C., Ma, J., Tse, K.T., Cheng, J.C.P. and Chan, C.M. (2020), "Simulation optimisation towards energy efficient green buildings: Current status and future trends", J. Clean. Prod., 254, 120012. https://doi.org/10.1016/j.jclepro.2020.120012.
  17. Gandomi, A.H., Kashani, A.R., Roke, D.A. and Mousavi, M. (2017), "Optimization of retaining wall design using evolutionary algorithms", Struct. Multidisc. Optim., 55, 809-825. https://doi.org/10.1007/s00158-016-1521-3.
  18. Hoang, N.D. and Cong, H.L. (2020), "CHDE excel solver: Differential evolution with feasibility rules for optimizing cantilever retaining wall design", DTU J. Sci. Technol., 2(39), 9-14.
  19. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, USA.
  20. Kalemci, E.N., Ikizler, S.B., Dede, T. and Angin, Z. (2020), "Design of reinforced concrete cantilever retaining wall using grey wolf optimization algorithm", Struct., 23, 245-253. https://doi.org/10.1016/j.istruc.2019.09.013.
  21. Kaveh, A. and Abadi, A.S.M. (2011), "Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls", Int. J. Civil Eng., 9(1), 1-8.
  22. Kaveh, A. and Eslamlou, A.D. (2020), Metaheuristic Optimization Algorithms in Civil Engineering: New Applications, 1st Edition, Springer, Cham, Switzerland.
  23. Kaveh, A., Akbari, H. and Hosseini, S.M. (2021), "Plasma generation optimization for optimal design of reinforced concrete cantilever retaining wall structures", Iran. J. Sci. Technol. Trans. Civil Eng., 1-24. https://doi.org/10.1007/s40996-020-00566-8.
  24. Kaveh, A., Hamedani, K.B. and Bakhshpoori, T. (2020), "Optimal design of reinforced concrete cantilever retaining walls utilizing eleven meta-heuristic algorithms: A comparative study", Period. Polytech. Civil Eng., 64(1), 156-168. https://doi.org/10.3311/PPci.15217.
  25. Kaveh, A., Kalateh-Ahani, M. and Fahimi-Farzam, M. (2013), "Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm", Struct. Eng. Mech., 47(2), 227-245. http://doi.org/10.12989/sem.2013.47.2.227.
  26. Kayabekir, A.E., Arama, Z.A., Bekdas, G. and Dalyan, I. (2020), "L-shaped reinforced concrete retaining wall design: Cost and sizing optimization", Chall. J. Struct. Mech., 6(3), 140-149. https://doi.org/10.20528/cjsmec.2020.03.005.
  27. Khajehzadeh, M., Kalhor, A., Tehrani, M.S. and Jebeli, M. (2022), "Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization", Struct. Eng. Mech, 81(1), 93-102. https://doi.org/10.12989/sem.2022.81.1.093.
  28. Khajehzadeh, M., Sobhani, A., Alizadeh, S.M.S. and Eslami, M. (2022), "A novel hybrid particle swarm optimization and sine cosine algorithm for seismic optimization of retaining structures", Periodica Polytechnica Civil Eng., 66(1), 96-111. https://doi.org/10.3311/PPci.19027.
  29. Khajehzadeh, M., Taha, M.R., El-Shafie, A. and Eslami, M. (2010), "Economic design of retaining wall using particle swarm optimization with passive congregation", Aust. J. Basic Appl. Sci., 4(11). 5500-5507.
  30. Konstandakopoulou, F., Tsimirika, M., Pnevmatikos, N. and Hatzigeorgiou, G.D. (2020), "Optimization of reinforced concrete retaining walls designed according to European provisions", Infrastruct., 5(6), 46. https://doi.org/10.3390/infrastructures5060046.
  31. Kramer, O. (2017), Genetic Algorithm Essentials, 1st Edition, Springer, Cham, Switzerland.
  32. McCormac, J.C. and Brown, R.H. (2013), Design of Reinforced Concrete, 9th Edition, John Wiley & Sons, Inc., Hoboken, NJ, USA.
  33. Mergos, P.E. and Mantoglou, F. (2020), "Optimum design of reinforced concrete retaining walls with the flower pollination algorithm", Struct. Multidisc. Optim., 61, 575-585. https://doi.org/10.1007/s00158-019-02380-x.
  34. Mevada, A., Patel, V. and Arekar, D.V. (2021), "Cost optimization of cantilever retaining wall using flower pollination algorithm", Int. J. Adv. Res. Sci., Commun. Technol., 6(1), 915-930. https://doi.org/10.48175/IJARSCT-1503.
  35. Miller, S.A., Horvath, A. and Monteiro, P.J.M. (2016), "Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%", Environ. Res. Lett., 11(7), 074029. http://doi.org/10.1088/1748-9326/11/7/074029.
  36. Mohammad, F.A. and Ahmed, H.G. (2018), "Optimum design of reinforced concrete cantilever retaining walls according Eurocode 2", Athens J. Technol. Eng., 5(3), 277-296. https://doi.org/10.30958/ajte.5-3-4.
  37. Palisade (2021), Evolver (Version 8.2); Palisade Corporation, Ithaca, USA. https://www.palisade.com/evolver/default.asp.
  38. Rahmanian, I., Lucet, Y. and Tesfamariam, S. (2014), "Optimal design of reinforced concrete beams: A review", Comput. Concrete, 13(4), 457-482. https://doi.org/10.12989/cac.2014.13.4.457.
  39. Ravichandran, N., Wang, L., Rahbari, P. and Juang, C.H. (2021), "Robust design optimization of retaining wall backfilled with shredded tire in the face of earthquake hazards", Bull. Eng. Geol. Environ., 80(2), 1351-1363. https://doi.org/10.1007/s10064-020-02038-9.
  40. Saribas, A. and Erbatur, F. (1996), "Optimization and sensitivity of retaining structures", J. Geotech. Eng., 122(8), 649-656. https://doi.org/10.1061/(asce)0733-9410(1996)122:8(649).
  41. Shakeel, M., Azam, R. and Riaz, M.R. (2021), "A spreadsheet-based tool for optimal design of reinforced concrete cantilever retaining walls", Innov. Infrastr. Solut., 7(1), 1-13. https://doi.org/10.1007/s41062-021-00700-z.
  42. Shakeel, M., Azam, R., Riaz, M.R. and Shihata, A. (2022), "Design optimization of reinforced concrete cantilever retaining walls: A state-of-the-art review", Adv. Civil Eng., 2022, Article ID 4760175. https://doi.org/10.1155/2022/4760175.
  43. Siddiqi, Z.A. (2018), Concrete Structures Part-1, 3rd Edition, Help Civil Engineering Publishers, Lahore, Pakistan.
  44. Sivanandam, S.N. and Deepa, S.N. (2008), Introduction to Genetic Algorithms. Springer, Berlin, Germany.
  45. Slowik, A. and Kwasnicka, H. (2020), "Evolutionary algorithms and their applications to engineering problems", Neur. Comput. Appl., 32, 12363-12379. https://doi.org/10.1007/s00521-020-04832-8.
  46. South Carolina Department of Transportation (2010), Geotechnical Design Manual, South Carolina Department of Transportation, SC, USA.
  47. Srivastava, S., Pandey, S. and Kumar, R. (2022), "Optimization of reinforced concrete cantilever retaining wall using particle swarm optimization", IOP Conf. Ser.: Mater. Sci. Eng., 1225(1), 012042. https://doi.org/10.1088/1757-899X/1225/1/012042.
  48. Temur, R. (2021), "Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm", Geomech. Eng., 24(3), 237-251. https://doi.org/10.12989/gae.2021.24.3.237.
  49. Temur, R. and Bekdas, G. (2016), "Teaching learning-based optimization for design of cantilever retaining walls", Struct. Eng. Mech., 57(4), 763-83. https://doi.org/10.12989/sem.2016.57.4.763.
  50. Tennessee Department of Transportation (2012), Earth Retaining Structures Manual, 2nd Edition, Tennessee Department of Transportation, TN, USA.
  51. Uray, E., Carbas, S., Geem, Z.W. and Kim, S. (2022), "Parameters optimization of taguchi method integrated hybrid harmony search algorithm for engineering design problems", Math., 10(3), 327. https://doi.org/10.3390/math10030327.
  52. Uzundurukan, S. and Saplioglu, K. (2022), "Evaluation of the effect of soil bearing capacity on optimum design of retaining wall", Arab. J. Geosci., 15(3), 296. https://doi.org/10.1007/s12517-022-09590-6.
  53. Waheed, J., Azam, R., Riaz, M.R., Shakeel, M., Mohamed, A. and Ali, E. (2022), "Metaheuristic-based practical tool for optimal design of reinforced concrete isolated footings: Development and application for parametric investigation", Build., 12(4), 471. https://doi.org/10.3390/buildings12040471.
  54. Wisconsin Department of Transportation (2020), Bridge Manual, Wisconsin Department of Transportation, WI, USA.
  55. Yang, X.S. (2018), Nature-Inspired Algorithms and Applied Optimization, Springer, Cham, Switzerland.