Acknowledgement
본 논문은 2022년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 연구과제(2021RIS-004)로 수행되었음.
References
- K. He, G. Gkioxari, P. Dollar, and R. Girshick, "Mask R-CNN," Proceedings of IEEE International Conference on Computer Vision, pp.2980-2988. 2017.
- Y. Aksoy, T.-H. Oh, S. Paris, M. Pollefeys, and W. Matusik, "Semantic Soft Segmentation," ACM Trans. Graph., 2018.
- D. Yoon and N. Kwak, "Object Segmentation Using MaskR-CNN and Semantic Soft Segmentation," Proceedings of 2020 Winter Conference of Korean Society of Communications and Communications, pp.872-873, Feb. 2020.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," Proceedings of Conference on Computer Vision and Pattern Recognition, pp.770-778, 2016.
- A. Levin, A. Rav-Acha, and D. Lischinski, "Spectral Matting," IEEE Trans. Pattern Anal. Mach. Intell., Vol.30, No.10, pp.1699-1712, Oct. 2008. https://doi.org/10.1109/TPAMI.2008.168
- X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. -C Loy, Y. Qiao, and X. Tang, "ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks," Proceedings of European Conference on Computer Vision, 2018.
- Z. Li, C. Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun, "Light-head R-CNN: In Defense of Two-stage Object Detector," arXiv preprint arXiv:1711.07264, 2017.
- Z. Cai and N. Vasconcelos, "Cascade R-CNN: Delving into High Quality Object Detection," Proceedings of Conference on Computer Vision and Pattern Recognition, 2018.
- P. Purkait, C. Zhao, and C. Zach, "SPP-Net: Deep Absolute Pose Regression with Synthetic Views," arXiv preprint arXiv:1712.03452, 2017.
- Z. Li and F. Zhou, "FSSD: Feature Fusion Single Shot Multibox Detector," arXiv preprint arXiv:1712.00960, 2017.
- H. Law and J. Deng, "CornerNet: Detecting Objects as Paired Keypoints," Proceedings of European Conference on Computer Vision, 2018.
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-time Object Detection," Proceedings of Conference on Computer Vision and Pattern Recognition, 2016.
- S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks," Proceedings of Conference on Neural Information Processing Systems, 2015.
- J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," Proceedings of Conference on Computer Vision and Pattern Recognition, 2015.
- A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, "ENet: A Deep Neural Network Architecture for Real-time Semantic Segmentation," arXiv preprint arXiv:1606.02147, 2016.
- A. Chaurasia and E. Culurciello, "LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation," 2017 IEEE Visual Communications and Image Processing, 2017.
- E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, "ERFNet: Efficient Residual Factorized Convnet for Real-time Semantic Segmentation," IEEE Transactions on Intelligent Transportation Systems, Vol.19, pp.263-272, 2017. https://doi.org/10.1109/TITS.2017.2750080
- L. -C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs," IEEE Trans. Pattern Anal. Mach. Intell., Vol.40, 2017.
- R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, "SLIC Superpixels Compared to State-of-the-Art Superpixel Methods," IEEE Trans. Pattern Anal. Mach. Intell., Vol.34, No.11, pp.2274-2281, 2012. https://doi.org/10.1109/TPAMI.2012.120
- H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid Scene Parsing Network," Proceedings of Conference on Computer Vision and Pattern Recognition, 2017.
- C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, "Photo-realistic Single Image Super-resolution Using a Generative Adversarial Network," Proceedings of Conference on Computer Vision and Pattern Recognition, pp.4681-4690, 2017.
- B. Lim, S. Son, H. Kim, S. Nah, and K. Lee, "Enhanced Deep Residual Networks for Single Image Super-resolution," Proceedings of Conference on Computer Vision and Pattern Recognition, 2017.
- A. Jolicoeur-Martineau, "The Relativistic Discriminator: a Key Element Missing from Standard GAN," arXiv preprint arXiv:1807.00734, 2018.