References
- Bargagliotti, A., Franklin, C., Arnold, P., Gould, R., Johnson, S., Perez, L., & Spangler, D. A. (2020). Pre-K-12 guidelines for assessment and instruction in statistics education II: A framework for statistics and data science education. American Statistical Association.
- Ben-Zvi, D. (2000). Toward understanding the role of technological tools in statistical learning. Mathematical Thinking and Learning, 2(1&2), 127-155. https://doi.org/10.1207/S15327833MTL0202_6
- Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027
- Buhlmann, P., & van de Geer, S. (2018). Statistics for big data: A perspective. Statistics & Probability Letters, 136, 37-41. https://doi.org/10.1016/j.spl.2018.02.016
- Choi, D. (2017). Problems of big data analysis education and their solutions. Journal of the Korea Convergence Society, 8(12), 265-274. https://doi.org/10.15207/JKCS.2017.8.12.265
- Davidson, M. A., Dewey, C. M., & Fleming, A. E. (2019). Teaching communication in a statistical collaboration course: A feasible, project-based, multimodal curriculum. The American Statistician, 73, 61-69. https://doi.org/10.1080/00031305.2018.1448890
- Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics education (GAISE) report: A pre-k-12 curriculum framework. American Statistical Association.
- Gal, I. (2002). Adults' statistical literacy: Meanings, components, responsibilities. International Statistical Review, 70(1), 1-51. https://doi.org/10.1111/j.1751-5823.2002.tb00336.x
- Gal, I. (2004). Statistical literacy: Meanings, components, responsibilities. In J. B. Garfield & D. Ben-Zvi (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 47-78). Kluwer Academic Publishers.
- Galeano, P., & Pena, D. (2019). Data science, big data and statistics. TEST, 28, 289-329. https://doi.org/10.1007/s11749-019-00651-9
- Garfield, J., & Ben-Zvi, D. (2004). Research on statistical literacy, reasoning, and thinking: Issues, challenges, and implications. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 397-409). Kluwer Academic Publishers.
- Garfield, J., & Ben-Zvi, D. (2009). Helping students develop statistical reasoning: Implementing a statistical reasoning learning environment. Teaching Statistics, 31(30), 72-77. https://doi.org/10.1111/j.1467-9639.2009.00363.x
- Gould, R. (2017). Data literacy is statistical literacy. Statistics Education Research Journal, 16(1), 22-25. https://doi.org/10.52041/serj.v16i1.209
- Han, S. H. (2022). New mathematical competence for : A focus on digital competence. The Journal of Educational Research in Mathematics, 32(1), 1-22. https://doi.org/10.29275/jerm.2022.32.1.1
- Heo, N. G. (2020). Analysis of secondary mathematics knowledge for AI learning through the AI related R&E Program. The Journal of Learner-Centered Curriculum and Instruction, 20(16), 673-689. https://doi.org/10.22251/jlcci.2020.20.16.673
- Johnson, D. W., & Johnson, R. T. (2008). Social interdependence theory and cooperative learning: The teacher's role. In R. Gillies, A. Ashman, & J. Terwel (Eds.), The teacher's role in implementing cooperative learning in the classroom. Computer-supported collaborative learning. Springer. https://doi.org/10.1007/978-0-387-70892-8_1
- Kang, H. R., Lim, C. L., & Cho, H. H. (2021). A study on coding mathematics curriculum and teaching methods that converges school mathematics and school informatics. The Mathematical Education, 60(4), 467-491. https://doi.org/10.7468/mathedu.2021.60.4.4671
- Kim, C., & Jeon, Y. J. (2021). The core concepts of mathematics for AI and an analysis of mathematical contents in the textbook. Journal of the Korean School Mathematics, 24(4), 391-405. https://doi.org/10.30807/ksms.2021.24.4.004
- Kim, H. (2019). A study on the direction of future education in the AI era. The Journal of Future Education, 9(4), 1-15. https://doi.org/10.26734/JFE.2019.09.04.01
- Kim, Y., & Cho K. (2013). Big data and statistics. Journal of the Korean Data and Information Science Society, 24(5), 959-974. https://doi.org/10.7465/jkdi.2013.24.5.959
- Ko, H. K. (2020). A study on development of school mathematics contents for artificial intelligence (AI) capability. Journal of the Korean School Mathematics Society, 23(2), 223-237. https://doi.org/10.30807/ksms.2020.23.2.003
- Kwon, O. N., Lee, K., Oh, S. J., & Park, J. S. (2021). An analysis of 'related learning elements' reflected in Mathematics> textbooks. Communications of Mathematical Education, 35(4), 445-473. https://doi.org/10.7468/jksmee.2021.35.4.445
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
- Lee, D. H., Go, E. S., Kwon, S. I., Kim, D. W., Kim, Y., Park, J. H., Gu, N., & Lee, K. H. (2017). Designing and implementing tasks for inquiry in school mathematics (Korea Foundation for the Advancement of Science & Creativity BD 18020001). Retrieved from https://askmath.kofac.re.kr/board.do?menuPos=15&menuPos=15&act=detail&idx=12271&searchValue1=title&skinSearchValue2=&searchKeyword=%EC%A2%8B%EC%9D%80&pageIndex=2
- Lee, E. H., & Kim, W. K. (2015) A comparative analysis on research trends of statistics education between Korea and overseas. The Mathematical Education, 54(3), 241-259. https://doi.org/10.7468/mathedu.2015.54.3.241
- Lee, H. W., & Han, S. H. (2020). An analysis of data science curriculum in Korea. Journal of the Korean Society for Library and Information Science, 54(1), 365-385. https://doi.org/10.4275/KSLIS.2020.54.1.365
- Lee, J., & Rim, H. (2021). Analysis of textbooks on statistical problem-solving process and statistical literacy. The Korean School Mathematics Society, 24(2), 191-216. https://doi.org/10.30807/ksms.2021.24.2.002
- Lee, K. H., Yoo, Y., & Tak, B. (2021). Towards data-driven statistics education: An exploration of restructuring the mathematics curriculum. The Korea Society of Educational Studies in Mathematics, 23(3), 361-386. https://doi.org/10.29275/sm.2021.09.23.3.361
- MacKay, R. J., & Oldford, R. W. (2000). Scientific method, statistical method and the speed of light. Statistical Science, 15(3), 254-278. https://doi.org/10.1214/ss/1009212817
- Ministry of Education (2015). Mathematics curriculum (#2015-74 supplement 8). Ministry of Education.
- Ministry of Education (2020). Mathematics curriculum (# 2020-236 supplement 8). Ministry of Education.
- Park, J. I., & Kim, S. B. (2022). The development and effect analysis of customized artificial intelligence and mathematics convergence program for vocational high schools. The Journal of Korean Association of Computer Education, 25(3), 39-47. http://doi.org/10.32431/kace.2022.25.3.004.
- Secchi, P. (2018). On the role of statistics in the era of big data: A call for a debate. Statistics & Probability Letters, 136, 10-14. https://doi.org/10.1016/j.spl.2018.02.041
- Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67, 223-265. https://doi.org/10.1111/j.1751-5823.1999.tb00442.x
- Yeo, S. (2021). Semiotic mediation through technology: The case of fraction reasoning. The Mathematical Education, 60(1), 1-19. https://doi.org/10.7468/mathedu.2021.60.1.1