DOI QR코드

DOI QR Code

Guidelines for big data projects in artificial intelligence mathematics education

인공지능 수학 교육을 위한 빅데이터 프로젝트 과제 가이드라인

  • Received : 2023.04.18
  • Accepted : 2023.05.10
  • Published : 2023.05.31

Abstract

In today's digital information society, student knowledge and skills to analyze big data and make informed decisions have become an important goal of school mathematics. Integrating big data statistical projects with digital technologies in high school <Artificial Intelligence> mathematics courses has the potential to provide students with a learning experience of high impact that can develop these essential skills. This paper proposes a set of guidelines for designing effective big data statistical project-based tasks and evaluates the tasks in the artificial intelligence mathematics textbook against these criteria. The proposed guidelines recommend that projects should: (1) align knowledge and skills with the national school mathematics curriculum; (2) use preprocessed massive datasets; (3) employ data scientists' problem-solving methods; (4) encourage decision-making; (5) leverage technological tools; and (6) promote collaborative learning. The findings indicate that few textbooks fully align with these guidelines, with most failing to incorporate elements corresponding to Guideline 2 in their project tasks. In addition, most tasks in the textbooks overlook or omit data preprocessing, either by using smaller datasets or by using big data without any form of preprocessing. This can potentially result in misconceptions among students regarding the nature of big data. Furthermore, this paper discusses the relevant mathematical knowledge and skills necessary for artificial intelligence, as well as the potential benefits and pedagogical considerations associated with integrating technology into big data tasks. This research sheds light on teaching mathematical concepts with machine learning algorithms and the effective use of technology tools in big data education.

지식정보사회의 비약적인 발전에 힘입어 빅데이터를 분석하여 가치있는 결과물을 도출하고 유용한 정보를 추출하는 역량이 학교 수학의 주요 목표 중 하나로 급부상하고 있다. 고등학교 수학 진로 선택 과목 중 하나인 <인공지능 수학>은 디지털 기술을 활용한 통계 프로젝트를 통해 빅데이터에 기반한 새로운 통계 교육의 기회를 제공할 수 있다. 이 연구에서는 효과적인 빅데이터 통계 프로젝트 기반 과제를 설계하기 위한 일련의 가이드라인을 제안하고, 이 기준에 따라 5종의 인공지능 수학 교과서에 실린 최적화 단원 과제들을 평가하였다. 인공지능 수학 교과에서 빅데이터 통계 프로젝트 과제를 설계 시 고려하도록 도출된 가이드라인은 다음과 같다: (1) 지식과 기술을 국가 학교 수학 교육과정에 맞추고, (2) 전처리된 대규모 데이터 세트를 사용하며, (3) 데이터 과학자의 문제 해결 방법을 사용하고, (4) 의사 결정을 장려하며, (5) 공학도구를 활용하고, (6) 협업 학습을 촉진한다. 분석 결과에 따르면 가이드라인에 완전히 부합하는 과제는 드물었고, 특히 대부분의 교과서에서 가이드라인 2에 해당하는 요소를 프로젝트 과제에서 통합하지 못하고 있는 것으로 나타났다. 또한 소규모 데이터 세트나 빅데이터를 전처리 없이 직접 사용하는 경우가 많아 학생들의 빅데이터의 개념에 대한 오해를 불러일으킬 것이 우려된다. 본 연구에서는 결과를 토대로 인공지능에 필요한 관련 수학 지식과 기술을 밝히고, 이것이 빅데이터 과제에 통합될 때 얻을 수 있는 잠재적 이점과 교육적 고려사항에 대해 논의하였다. 이 연구는 수학적 개념과 머신러닝 알고리즘과의 연계 및 빅데이터를 사용하는 통계 교육에서의 효과적인 공학적 도구 사용에 대한 통찰을 제공하고자 하였다.

Keywords

References

  1. Bargagliotti, A., Franklin, C., Arnold, P., Gould, R., Johnson, S., Perez, L., & Spangler, D. A. (2020). Pre-K-12 guidelines for assessment and instruction in statistics education II: A framework for statistics and data science education. American Statistical Association.
  2. Ben-Zvi, D. (2000). Toward understanding the role of technological tools in statistical learning. Mathematical Thinking and Learning, 2(1&2), 127-155. https://doi.org/10.1207/S15327833MTL0202_6
  3. Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027
  4. Buhlmann, P., & van de Geer, S. (2018). Statistics for big data: A perspective. Statistics & Probability Letters, 136, 37-41. https://doi.org/10.1016/j.spl.2018.02.016
  5. Choi, D. (2017). Problems of big data analysis education and their solutions. Journal of the Korea Convergence Society, 8(12), 265-274. https://doi.org/10.15207/JKCS.2017.8.12.265
  6. Davidson, M. A., Dewey, C. M., & Fleming, A. E. (2019). Teaching communication in a statistical collaboration course: A feasible, project-based, multimodal curriculum. The American Statistician, 73, 61-69. https://doi.org/10.1080/00031305.2018.1448890
  7. Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007). Guidelines for assessment and instruction in statistics education (GAISE) report: A pre-k-12 curriculum framework. American Statistical Association.
  8. Gal, I. (2002). Adults' statistical literacy: Meanings, components, responsibilities. International Statistical Review, 70(1), 1-51. https://doi.org/10.1111/j.1751-5823.2002.tb00336.x
  9. Gal, I. (2004). Statistical literacy: Meanings, components, responsibilities. In J. B. Garfield & D. Ben-Zvi (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 47-78). Kluwer Academic Publishers.
  10. Galeano, P., & Pena, D. (2019). Data science, big data and statistics. TEST, 28, 289-329. https://doi.org/10.1007/s11749-019-00651-9
  11. Garfield, J., & Ben-Zvi, D. (2004). Research on statistical literacy, reasoning, and thinking: Issues, challenges, and implications. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 397-409). Kluwer Academic Publishers.
  12. Garfield, J., & Ben-Zvi, D. (2009). Helping students develop statistical reasoning: Implementing a statistical reasoning learning environment. Teaching Statistics, 31(30), 72-77. https://doi.org/10.1111/j.1467-9639.2009.00363.x
  13. Gould, R. (2017). Data literacy is statistical literacy. Statistics Education Research Journal, 16(1), 22-25. https://doi.org/10.52041/serj.v16i1.209
  14. Han, S. H. (2022). New mathematical competence for : A focus on digital competence. The Journal of Educational Research in Mathematics, 32(1), 1-22. https://doi.org/10.29275/jerm.2022.32.1.1
  15. Heo, N. G. (2020). Analysis of secondary mathematics knowledge for AI learning through the AI related R&E Program. The Journal of Learner-Centered Curriculum and Instruction, 20(16), 673-689. https://doi.org/10.22251/jlcci.2020.20.16.673
  16. Johnson, D. W., & Johnson, R. T. (2008). Social interdependence theory and cooperative learning: The teacher's role. In R. Gillies, A. Ashman, & J. Terwel (Eds.), The teacher's role in implementing cooperative learning in the classroom. Computer-supported collaborative learning. Springer. https://doi.org/10.1007/978-0-387-70892-8_1
  17. Kang, H. R., Lim, C. L., & Cho, H. H. (2021). A study on coding mathematics curriculum and teaching methods that converges school mathematics and school informatics. The Mathematical Education, 60(4), 467-491. https://doi.org/10.7468/mathedu.2021.60.4.4671
  18. Kim, C., & Jeon, Y. J. (2021). The core concepts of mathematics for AI and an analysis of mathematical contents in the textbook. Journal of the Korean School Mathematics, 24(4), 391-405. https://doi.org/10.30807/ksms.2021.24.4.004
  19. Kim, H. (2019). A study on the direction of future education in the AI era. The Journal of Future Education, 9(4), 1-15. https://doi.org/10.26734/JFE.2019.09.04.01
  20. Kim, Y., & Cho K. (2013). Big data and statistics. Journal of the Korean Data and Information Science Society, 24(5), 959-974. https://doi.org/10.7465/jkdi.2013.24.5.959
  21. Ko, H. K. (2020). A study on development of school mathematics contents for artificial intelligence (AI) capability. Journal of the Korean School Mathematics Society, 23(2), 223-237. https://doi.org/10.30807/ksms.2020.23.2.003
  22. Kwon, O. N., Lee, K., Oh, S. J., & Park, J. S. (2021). An analysis of 'related learning elements' reflected in Mathematics> textbooks. Communications of Mathematical Education, 35(4), 445-473. https://doi.org/10.7468/jksmee.2021.35.4.445
  23. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
  24. Lee, D. H., Go, E. S., Kwon, S. I., Kim, D. W., Kim, Y., Park, J. H., Gu, N., & Lee, K. H. (2017). Designing and implementing tasks for inquiry in school mathematics (Korea Foundation for the Advancement of Science & Creativity BD 18020001). Retrieved from https://askmath.kofac.re.kr/board.do?menuPos=15&menuPos=15&act=detail&idx=12271&searchValue1=title&skinSearchValue2=&searchKeyword=%EC%A2%8B%EC%9D%80&pageIndex=2
  25. Lee, E. H., & Kim, W. K. (2015) A comparative analysis on research trends of statistics education between Korea and overseas. The Mathematical Education, 54(3), 241-259. https://doi.org/10.7468/mathedu.2015.54.3.241
  26. Lee, H. W., & Han, S. H. (2020). An analysis of data science curriculum in Korea. Journal of the Korean Society for Library and Information Science, 54(1), 365-385. https://doi.org/10.4275/KSLIS.2020.54.1.365
  27. Lee, J., & Rim, H. (2021). Analysis of textbooks on statistical problem-solving process and statistical literacy. The Korean School Mathematics Society, 24(2), 191-216. https://doi.org/10.30807/ksms.2021.24.2.002
  28. Lee, K. H., Yoo, Y., & Tak, B. (2021). Towards data-driven statistics education: An exploration of restructuring the mathematics curriculum. The Korea Society of Educational Studies in Mathematics, 23(3), 361-386. https://doi.org/10.29275/sm.2021.09.23.3.361
  29. MacKay, R. J., & Oldford, R. W. (2000). Scientific method, statistical method and the speed of light. Statistical Science, 15(3), 254-278. https://doi.org/10.1214/ss/1009212817
  30. Ministry of Education (2015). Mathematics curriculum (#2015-74 supplement 8). Ministry of Education.
  31. Ministry of Education (2020). Mathematics curriculum (# 2020-236 supplement 8). Ministry of Education.
  32. Park, J. I., & Kim, S. B. (2022). The development and effect analysis of customized artificial intelligence and mathematics convergence program for vocational high schools. The Journal of Korean Association of Computer Education, 25(3), 39-47. http://doi.org/10.32431/kace.2022.25.3.004.
  33. Secchi, P. (2018). On the role of statistics in the era of big data: A call for a debate. Statistics & Probability Letters, 136, 10-14. https://doi.org/10.1016/j.spl.2018.02.041
  34. Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67, 223-265. https://doi.org/10.1111/j.1751-5823.1999.tb00442.x
  35. Yeo, S. (2021). Semiotic mediation through technology: The case of fraction reasoning. The Mathematical Education, 60(1), 1-19. https://doi.org/10.7468/mathedu.2021.60.1.1