DOI QR코드

DOI QR Code

Protective Effect of Enzymatically Modified Stevia on C2C12 Cell-based Model of Dexamethasone-induced Muscle Atrophy

덱사메타손으로 유도된 근위축 C2C12 모델에서 효소처리스테비아의 보호 효과

  • Geon Oh (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Sun-Il Choi (Agricultural and Life Sciences Research Institute, Kangwon National University) ;
  • Xionggao Han (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Xiao Men (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Se-Jeong Lee (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Ji-Hyun Im (Department of Food Biotechnology and Environmental Science, Kangwon National University) ;
  • Ho-Seong Lee (Sandol Food Co., Ltd) ;
  • Hyeong-Dong Jung (Sandol Food Co., Ltd) ;
  • Moon Jin La (Hongcheon Institute of Medicinal Herb) ;
  • Min Hee Kwon (Hongcheon Institute of Medicinal Herb) ;
  • Ok-Hwan Lee (Department of Food Biotechnology and Environmental Science, Kangwon National University)
  • 오건 (강원대학교 식품환경융합학과) ;
  • 최선일 (강원대학교 농업생명과학연구원) ;
  • 한웅호 (강원대학교 식품환경융합학과) ;
  • 문효 (강원대학교 식품환경융합학과) ;
  • 이세정 (강원대학교 식품환경융합학과) ;
  • 임지현 (강원대학교 식품환경융합학과) ;
  • 이호성 ((주)산돌식품) ;
  • 정형동 ((주)산돌식품) ;
  • 라문진 ((재)홍천메디칼허브연구소) ;
  • 권민희 ((재)홍천메디칼허브연구소) ;
  • 이옥환 (강원대학교 식품환경융합학과)
  • Received : 2023.03.20
  • Accepted : 2023.04.04
  • Published : 2023.04.28

Abstract

This study aimed to investigate the protective effect of enzymatically modified stevia (EMS) on C2C12 cell-based model of dexamethasone (DEX)-induced muscle atrophy to provide baseline data for utilizing EMS in functional health products. C2C12 cells with DEX-induced muscle atrophy were treated with EMS (10, 50, and 100 ㎍/mL) for 24 h. C2C12 cells were treated with EMS and DEX to test their effects on cell viability and myotube formation (myotube diameter and fusion index), and analyze the expression of muscle strengthening or degrading protein markers. Schisandra chinensis Extract, a common functional ingredient, was used as a positive control. EMS did not show any cytotoxic effect at all treatment concentrations. Moreover, it exerted protective effects on C2C12 cell-based model of DEX-induced muscle atrophy at all concentrations. In addition, the positive effect of EMS on myotube formation was confirmed based on the measurement and comparison of the fusion index and myotube diameter when compared with myotubes treated with DEX alone. EMS treatment reduced the expression of muscle cell degradation-related proteins Fbx32 and MuRF1, and increased the expression of muscle strengthening and synthesis related proteins SIRT1 and pAkt/Akt. Thus, EMS is a potential ingredient for developing functional health foods and should be further evaluated in preclinical models.

본 연구에서는 EMS를 건강기능식품으로 활용하기 위한 기초적인 데이터를 제공하기 위해 EMS가 DEX으로 유도한 근위축 C2C12 모델에서 미치는 보호 효과를 조사하고자 하였다. DEX를 처리한 근위축 모델을 확립하였다. 그리고 DEX으로 유도한 근위축 C2C12 myotube에 24시간 동안 10, 50, 100 ㎍/mL 농도의 EMS를 처리하였으며, C2C12에 EMS와 DEX를 처리하여 XTT 세포독성 테스트와 myotube 형성 효능(myotube diameter와 fusion index) 측정, 단백질 발현량 분석을 수행하였다. 또한, 기능성을 입증받은 SE를 positive control로 사용하였다. EMS의 세포독성 평가 결과, 100 ㎍/mL 농도까지 유의한 독성이 없는 것을 확인하였다. C2C12 myotube에서 EMS는 DEX만 처리한 실험군과 비교하여 모든 농도에서 유의적으로 세포 보호 효능이 있음을 확인하였다. 또한 fusion index와 myotube diameter를 측정하여 DEX만 처리한 실험군과 비교하였을 때, EMS의 myotube 형성 효능을 확인하였다. EMS는 근육세포 분해 관련 단백질인 Fbx32와 MuRF1의 발현을 감소시키고, 그와 반대로 근력 강화 및 합성과 관련된 단백질인 SIRT1과 p-Akt/Akt의 발현은 증가시켰다. 이러한 연구결과는 EMS가 건강기능식품 개발의 성분으로 활용될 수 있으며, in vivo 동물 모델에서도 활용 가능할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 중소벤처기업부와 중소기업기술정보진흥원의 "지역특화산업육성+(R&D, S3272010)"사업과 "중소기업기술개발지원사업(S3241314)" 그리고 정부(과학기술정보통신부)와 교육부, 한국연구재단의 재원으로 교육부 및 한국연구재단을 통한 "4단계 두뇌한국21 사업(4단계 BK21 사업) (4299990913942)"과 "기초연구사업(2021R1A6A1A03044242)"의 연구로 이에 감사드립니다.

References

  1. Jang, H.C., Recent progression in sarcopenia and sarcopenic obesity. J. Korean Geriatr. Soc., 15, 1-7 (2011). https://doi.org/10.4235/jkgs.2011.15.1.1
  2. Park, S.W., Sarcopenia of the old age. J. Korean Soc. Endocrinol., 22, 1-7 (2007). https://doi.org/10.3803/jkes.2007.22.1.1
  3. Hernandez-Ono, A., Monter-Carreola, G., Zamora-Gonzalez, J., Cardoso-Saldana, G., Posadas-Sanchez, R., Torres-Tamayo, M., Posadas-Romero, C., Association of visceral fat with coronary risk factors in a population-based sample of postmenopausal women. Int. J. Obes. Relat. Metab. Disord., 26, 33-39 (2002). https://doi.org/10.1038/sj.ijo.0801842
  4. Pi-Sunyer, F.X., The epidemiology of central fat distribution in relation to disease. Nutr. Rev., 62, S120-S126 (2004). https://doi.org/10.1111/j.1753-4887.2004.tb00081.x
  5. Roubenoff, R. Sarcopenic obesity: the confluence of two epidemics. Obes. Res., 12, 887-888 (2004). https://doi.org/10.1038/oby.2004.107
  6. Zamboni, M., Mazzali, G., Fantin, F., Rossi, A., Francesco V.D., Sarcopenic obesity: a new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis., 18, 388-395 (2008). https://doi.org/10.1016/j.numecd.2007.10.002
  7. Cao, L., Morley, J.E., Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinical modification (ICD-10-CM) code. J. Am. Med. Dir. Assoc., 17, 675-677 (2016). https://doi.org/10.1016/j.jamda.2016.06.001
  8. Park, H.Y., Choi, H.D., Kim, Y.S., Research trend in sugar alternatives. Food Sci. Ind., 49, 40-54 (2016).
  9. Ha, K., Joung, H., Song, Y.J., Intake of dietary sugar and its influence on chronic disease in the Korean population. Food Sci. Ind., 49, 2-11 (2016).
  10. Han, S.Y., Kim T.H., The effect of food consumption value on attitude towards alternative sweetened foods and purchase intention: focusing on the moderating effect of subjective body image. Culi. Sci. & Hos. Res., 28, 124-135 (2022).
  11. Kim, Y.H., Kim, S.B., Kim, S.J., Park, S.W., Market and trend of alternative sweeteners. Food Sci. Ind., 49, 17-28 (2016).
  12. Gardner, C., Wylie-Rosett, J., Gidding, S.S., Steffen, L.M., Johnson, R.K., Reader, D., Lichtenstein A.H., Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care, 35, 1798-1808 (2012). https://doi.org/10.2337/dc12-9002
  13. Ju, D.L., The efficacy and safety of non-nutritive sweeteners. J. Korean Diabetes, 16, 281-286 (2015). https://doi.org/10.4093/jkd.2015.16.4.281
  14. Wiebe, N., Padwal, R., Field, C., Marks, S., Jacobs, R., Tonelli, M., A systematic review on the effect of sweeteners on glycemic response and clinically relevant outcomes. BMC Med., 9, 1-18 (2011).
  15. Gougeon, R., Spidel, M., Lee, K., Field, C.J., Canadian diabetes association national nutrition committee technical review: non-nutritive intense sweeteners in diabetes management. Can. J. Diabetes, 28, 385-399 (2004).
  16. Knowler, W.C., Barrett-Connor, E., Fowler, S.E., Hamman, R.F., Lachin, J.M., Walker, E.A., Nathan, D.M., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med., 346, 393-403 (2002). https://doi.org/10.1056/NEJMoa012512
  17. Tuomilehto, J., Lindstrom, J., Eriksson, J.G., Valle, T.T., Hamalainen, H., Ilanne-Parikka, P., Keinanen-Kiukaanniemi, S., Laakso, M., Louheranta, A., Rastas, M., Salminen, V., Uusitupa, M., Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med., 344, 1343-1350 (2001). https://doi.org/10.1056/NEJM200105033441801
  18. Vermunt, S.H., Pasman, W.J., Schaafsma, G., Kardinaal, A.F., Effects of sugar intake on body weight: a review. Obes. Rev., 4, 91-99 (2003). https://doi.org/10.1046/j.1467-789X.2003.00102.x
  19. Kim, J.E., Kwon, E.Y., Han, Y., Allulose attenuated age-associated sarcopenia via regulating IGF-1 and myostatin in aged mice. Mol. Nutr. Food Res., 66, 2100549 (2022).
  20. Beak, S.E., Sensory properties of low calorie Ssanhwa beverages containing sweetener(l);relative sweetness and sensory properties of Ssanghwa beverages sweetened with glucosyl stevia, acesulfame-K and aspartame. Korean J. Food & Nutr., 21, 190-196 (2008).
  21. Ryu, D., Kim, D.B., Lee, K.H., Son D.S., Surh, J., Influences of sugar substitutes on the physicochemical and sensory properties and hardness of Baksulgi during storage. Korean J. Food Sci. Technol., 44, 568-576 (2012). https://doi.org/10.9721/KJFST.2012.44.5.568
  22. Kim, H.A., Lee K.H., Quality characteristics of Yanggeng made with various sweeteners. J. East Asian Soc. Dietary Life, 22, 818-825 (2012).
  23. Kim, H.J., Lee W.J., Effects of dietary polyphenol (-)-epigallocatechin 3-gallate on the differentiation of mouse C2C12 myoblasts. J. Life Sci., 17, 420-426 (2007). https://doi.org/10.5352/JLS.2007.17.3.420
  24. Jung, H.J., Kim, S., Park, J., Kim K.H., Kim K., Jun W., Antioxidant activities and protective effects of hot water extract from Curcuma longa L. on oxidative stress-induced C2C12 myoblasts. J. Korean Soc. Food Sci. Nutr., 46, 1408-1413 (2017).
  25. Menconi, M., Gonnella, P., Petkova, V., Lecker, S., Hasselgren, P.O., Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J. Cell Biochem., 105, 353-364 (2008). https://doi.org/10.1002/jcb.21833
  26. Jeon, S.K., Kim, O.H., Park, S.M., Lee, J.H., Park, S.D., Effects of glucoraphanin in dexamethasone-induced skeletal muscle atrophy in vitro model. Herb. Formula Sci., 28, 29-39 (2020).
  27. MFDS, (2023, March 1). Information by ingredient of health functional food. Retrieved from https://www.foodsafetykorea.go.kr:443/portal/board/boardDetail.do?menu_no=2660&menu_grp=MENU_NEW01&bbs_no=bbs987&ntctxt_no=1070097
  28. Kerasioti, E., Stagos, D., Priftis, A., Aivazidis, S., Tsatsakis, A. M., Hayes, A. W., Kouretas, D., Antioxidant effects of whey protein on muscle C2C12 cells. Food Chem., 155, 271-278 (2014). https://doi.org/10.1016/j.foodchem.2014.01.066
  29. Velica, P., Bunce, C.M., A quick, simple and unbiased method to quantify C2C12 myogenic differentiation. Muscle Ner., 44, 366-370 (2011).
  30. Park, C., Jeong, J.W., Choi, Y.H., Induction of muscle atrophy by dexamethasone and hydrogen peroxide in differentiated C2C12 myotubes. J. Life Sci., 27, 1479-1485 (2017).
  31. Cho, Y.H., Lee, S.Y., Lee, C.H., Park, J.H., So, Y.S., Effect of Schisandra chinensis Baillon extracts and regular low-intensity exercise on muscle strength and mass in older adults: a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr., 113, 1440-1446 (2021). https://doi.org/10.1093/ajcn/nqaa447
  32. Kim, J.S., Yi, H.K., Schisandrin C enhances mitochondrial biogenesis and autophagy in C2C12 skeletal muscle cells: potential involvement of anti-oxidative mechanisms. NS. Arch. Pharmacol., 391, 197-206 (2018). https://doi.org/10.1007/s00210-017-1449-1
  33. Murphy, D.P., Nicholson, T., Jones, S.W., O'Leary, M.F., MyoCount: a software tool for the automated quantification of myotube surface area and nuclear fusion index. Wellcome Open Res., 4, 6 (2019).
  34. Kim, J., Park, M.Y., Kim, H.K., Park, Y., Whang, K.Y., Cortisone and dexamethasone inhibit myogenesis by modulating the AKT/mTOR signaling pathway in C2C12. Biosci. Biotech. Bioch., 80, 2093-2099 (2016). https://doi.org/10.1080/09168451.2016.1210502
  35. Lee, C.W., Chang, Y.B., Park, C.W., Han, S.H., Suh, H.J., Ahn, Y., Protein hydrolysate from Spirulina platensis prevents dexamethasone-induced muscle atrophy via Akt/Foxo3 signaling in C2C12 myotubes. Mar. Drugs, 20, 365 (2022).
  36. MFDS, (2023, March 1). Health functional food functional evaluation guide 'Related to muscle strength'. Retrieved from https://www.mfds.go.kr/brd/m_1060/view.do?seq=14654&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=15
  37. Lin, M.T., Beal, M.F., Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787-795 (2006). https://doi.org/10.1038/nature05292
  38. Vainshtein, A., Grumati, P., Sandri, M., Bonaldo, P., Skeletal muscle, autophagy, and physical activity: the menage a trois of metabolic regulation in health and disease. J. Mol. Med., 92, 127-137 (2014). https://doi.org/10.1007/s00109-013-1096-z
  39. Foletta, V.C., White, L.J., Larsen, A.E., Leger, B., Russell, A.P., The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflug. Arch. Eur. J. Phy, 461, 325-335 (2011). https://doi.org/10.1007/s00424-010-0919-9
  40. Zeng, Z., Liang, J., Wu, L., Zhang, H., Lv, J., Chen, N., Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control. Front. Physiol., 11, 583478 (2020).