Acknowledgement
본 연구는 중소벤처기업부와 중소기업기술정보진흥원의 "지역특화산업육성+(R&D, S3272010)"사업과 "중소기업기술개발지원사업(S3241314)" 그리고 정부(과학기술정보통신부)와 교육부, 한국연구재단의 재원으로 교육부 및 한국연구재단을 통한 "4단계 두뇌한국21 사업(4단계 BK21 사업) (4299990913942)"과 "기초연구사업(2021R1A6A1A03044242)"의 연구로 이에 감사드립니다.
References
- Jang, H.C., Recent progression in sarcopenia and sarcopenic obesity. J. Korean Geriatr. Soc., 15, 1-7 (2011). https://doi.org/10.4235/jkgs.2011.15.1.1
- Park, S.W., Sarcopenia of the old age. J. Korean Soc. Endocrinol., 22, 1-7 (2007). https://doi.org/10.3803/jkes.2007.22.1.1
- Hernandez-Ono, A., Monter-Carreola, G., Zamora-Gonzalez, J., Cardoso-Saldana, G., Posadas-Sanchez, R., Torres-Tamayo, M., Posadas-Romero, C., Association of visceral fat with coronary risk factors in a population-based sample of postmenopausal women. Int. J. Obes. Relat. Metab. Disord., 26, 33-39 (2002). https://doi.org/10.1038/sj.ijo.0801842
- Pi-Sunyer, F.X., The epidemiology of central fat distribution in relation to disease. Nutr. Rev., 62, S120-S126 (2004). https://doi.org/10.1111/j.1753-4887.2004.tb00081.x
- Roubenoff, R. Sarcopenic obesity: the confluence of two epidemics. Obes. Res., 12, 887-888 (2004). https://doi.org/10.1038/oby.2004.107
- Zamboni, M., Mazzali, G., Fantin, F., Rossi, A., Francesco V.D., Sarcopenic obesity: a new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis., 18, 388-395 (2008). https://doi.org/10.1016/j.numecd.2007.10.002
- Cao, L., Morley, J.E., Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinical modification (ICD-10-CM) code. J. Am. Med. Dir. Assoc., 17, 675-677 (2016). https://doi.org/10.1016/j.jamda.2016.06.001
- Park, H.Y., Choi, H.D., Kim, Y.S., Research trend in sugar alternatives. Food Sci. Ind., 49, 40-54 (2016).
- Ha, K., Joung, H., Song, Y.J., Intake of dietary sugar and its influence on chronic disease in the Korean population. Food Sci. Ind., 49, 2-11 (2016).
- Han, S.Y., Kim T.H., The effect of food consumption value on attitude towards alternative sweetened foods and purchase intention: focusing on the moderating effect of subjective body image. Culi. Sci. & Hos. Res., 28, 124-135 (2022).
- Kim, Y.H., Kim, S.B., Kim, S.J., Park, S.W., Market and trend of alternative sweeteners. Food Sci. Ind., 49, 17-28 (2016).
- Gardner, C., Wylie-Rosett, J., Gidding, S.S., Steffen, L.M., Johnson, R.K., Reader, D., Lichtenstein A.H., Nonnutritive sweeteners: current use and health perspectives: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care, 35, 1798-1808 (2012). https://doi.org/10.2337/dc12-9002
- Ju, D.L., The efficacy and safety of non-nutritive sweeteners. J. Korean Diabetes, 16, 281-286 (2015). https://doi.org/10.4093/jkd.2015.16.4.281
- Wiebe, N., Padwal, R., Field, C., Marks, S., Jacobs, R., Tonelli, M., A systematic review on the effect of sweeteners on glycemic response and clinically relevant outcomes. BMC Med., 9, 1-18 (2011).
- Gougeon, R., Spidel, M., Lee, K., Field, C.J., Canadian diabetes association national nutrition committee technical review: non-nutritive intense sweeteners in diabetes management. Can. J. Diabetes, 28, 385-399 (2004).
- Knowler, W.C., Barrett-Connor, E., Fowler, S.E., Hamman, R.F., Lachin, J.M., Walker, E.A., Nathan, D.M., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med., 346, 393-403 (2002). https://doi.org/10.1056/NEJMoa012512
- Tuomilehto, J., Lindstrom, J., Eriksson, J.G., Valle, T.T., Hamalainen, H., Ilanne-Parikka, P., Keinanen-Kiukaanniemi, S., Laakso, M., Louheranta, A., Rastas, M., Salminen, V., Uusitupa, M., Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med., 344, 1343-1350 (2001). https://doi.org/10.1056/NEJM200105033441801
- Vermunt, S.H., Pasman, W.J., Schaafsma, G., Kardinaal, A.F., Effects of sugar intake on body weight: a review. Obes. Rev., 4, 91-99 (2003). https://doi.org/10.1046/j.1467-789X.2003.00102.x
- Kim, J.E., Kwon, E.Y., Han, Y., Allulose attenuated age-associated sarcopenia via regulating IGF-1 and myostatin in aged mice. Mol. Nutr. Food Res., 66, 2100549 (2022).
- Beak, S.E., Sensory properties of low calorie Ssanhwa beverages containing sweetener(l);relative sweetness and sensory properties of Ssanghwa beverages sweetened with glucosyl stevia, acesulfame-K and aspartame. Korean J. Food & Nutr., 21, 190-196 (2008).
- Ryu, D., Kim, D.B., Lee, K.H., Son D.S., Surh, J., Influences of sugar substitutes on the physicochemical and sensory properties and hardness of Baksulgi during storage. Korean J. Food Sci. Technol., 44, 568-576 (2012). https://doi.org/10.9721/KJFST.2012.44.5.568
- Kim, H.A., Lee K.H., Quality characteristics of Yanggeng made with various sweeteners. J. East Asian Soc. Dietary Life, 22, 818-825 (2012).
- Kim, H.J., Lee W.J., Effects of dietary polyphenol (-)-epigallocatechin 3-gallate on the differentiation of mouse C2C12 myoblasts. J. Life Sci., 17, 420-426 (2007). https://doi.org/10.5352/JLS.2007.17.3.420
- Jung, H.J., Kim, S., Park, J., Kim K.H., Kim K., Jun W., Antioxidant activities and protective effects of hot water extract from Curcuma longa L. on oxidative stress-induced C2C12 myoblasts. J. Korean Soc. Food Sci. Nutr., 46, 1408-1413 (2017).
- Menconi, M., Gonnella, P., Petkova, V., Lecker, S., Hasselgren, P.O., Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J. Cell Biochem., 105, 353-364 (2008). https://doi.org/10.1002/jcb.21833
- Jeon, S.K., Kim, O.H., Park, S.M., Lee, J.H., Park, S.D., Effects of glucoraphanin in dexamethasone-induced skeletal muscle atrophy in vitro model. Herb. Formula Sci., 28, 29-39 (2020).
- MFDS, (2023, March 1). Information by ingredient of health functional food. Retrieved from https://www.foodsafetykorea.go.kr:443/portal/board/boardDetail.do?menu_no=2660&menu_grp=MENU_NEW01&bbs_no=bbs987&ntctxt_no=1070097
- Kerasioti, E., Stagos, D., Priftis, A., Aivazidis, S., Tsatsakis, A. M., Hayes, A. W., Kouretas, D., Antioxidant effects of whey protein on muscle C2C12 cells. Food Chem., 155, 271-278 (2014). https://doi.org/10.1016/j.foodchem.2014.01.066
- Velica, P., Bunce, C.M., A quick, simple and unbiased method to quantify C2C12 myogenic differentiation. Muscle Ner., 44, 366-370 (2011).
- Park, C., Jeong, J.W., Choi, Y.H., Induction of muscle atrophy by dexamethasone and hydrogen peroxide in differentiated C2C12 myotubes. J. Life Sci., 27, 1479-1485 (2017).
- Cho, Y.H., Lee, S.Y., Lee, C.H., Park, J.H., So, Y.S., Effect of Schisandra chinensis Baillon extracts and regular low-intensity exercise on muscle strength and mass in older adults: a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr., 113, 1440-1446 (2021). https://doi.org/10.1093/ajcn/nqaa447
- Kim, J.S., Yi, H.K., Schisandrin C enhances mitochondrial biogenesis and autophagy in C2C12 skeletal muscle cells: potential involvement of anti-oxidative mechanisms. NS. Arch. Pharmacol., 391, 197-206 (2018). https://doi.org/10.1007/s00210-017-1449-1
- Murphy, D.P., Nicholson, T., Jones, S.W., O'Leary, M.F., MyoCount: a software tool for the automated quantification of myotube surface area and nuclear fusion index. Wellcome Open Res., 4, 6 (2019).
- Kim, J., Park, M.Y., Kim, H.K., Park, Y., Whang, K.Y., Cortisone and dexamethasone inhibit myogenesis by modulating the AKT/mTOR signaling pathway in C2C12. Biosci. Biotech. Bioch., 80, 2093-2099 (2016). https://doi.org/10.1080/09168451.2016.1210502
- Lee, C.W., Chang, Y.B., Park, C.W., Han, S.H., Suh, H.J., Ahn, Y., Protein hydrolysate from Spirulina platensis prevents dexamethasone-induced muscle atrophy via Akt/Foxo3 signaling in C2C12 myotubes. Mar. Drugs, 20, 365 (2022).
- MFDS, (2023, March 1). Health functional food functional evaluation guide 'Related to muscle strength'. Retrieved from https://www.mfds.go.kr/brd/m_1060/view.do?seq=14654&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=15
- Lin, M.T., Beal, M.F., Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787-795 (2006). https://doi.org/10.1038/nature05292
- Vainshtein, A., Grumati, P., Sandri, M., Bonaldo, P., Skeletal muscle, autophagy, and physical activity: the menage a trois of metabolic regulation in health and disease. J. Mol. Med., 92, 127-137 (2014). https://doi.org/10.1007/s00109-013-1096-z
- Foletta, V.C., White, L.J., Larsen, A.E., Leger, B., Russell, A.P., The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflug. Arch. Eur. J. Phy, 461, 325-335 (2011). https://doi.org/10.1007/s00424-010-0919-9
- Zeng, Z., Liang, J., Wu, L., Zhang, H., Lv, J., Chen, N., Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control. Front. Physiol., 11, 583478 (2020).