과제정보
본 연구는 부산대학교 2년 과제 연구비에 의하여 수행되었음.
참고문헌
- Amid E and Warmuth MK (2019). TriMap: Large-Scale dimensionality reduction using triplets, Available from: arXiv:1910.00204
- Belkin M and Niyogi M (2003). Laplacian eigenmaps for dimensionality reduction and data representation, Neural Computation, 15, 1373-1396. https://doi.org/10.1162/089976603321780317
- Chen L and Buja A (2009). Local multidimensional scaling for nonlinear dimension reduction, graph drawing and proximity analysis, Journal of the American Statistical Association, 104, 209-219. https://doi.org/10.1198/jasa.2009.0111
- Kobak D and Berens P (2019). The art of t-SNE for single-cell transcriptomics, Nature Communications, 10, 5416.
- Kobak D and Linderman GC (2021). Initialization is critical for preserving global data structure in both t-SNE and UMAP, Nature Biotechnology, 39, 156-157. https://doi.org/10.1038/s41587-020-00809-z
- Kohonen T (1990). The self-organizing map, Proceedings of the IEEE, 78, 1464-1479. https://doi.org/10.1109/5.58325
- McInnes L, Healy J, and Melville J (2018). UMAP: Uniform manifold approximation and projection for dimension reduction, Available from: arXiv:1802.03426
- Roweis ST and Saul LK (2000). Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323-2326. https://doi.org/10.1126/science.290.5500.2323
- Scholkopf B, Smola A, and Muller KR (1999). Kernel principal component analysis. In Scholkopf B, Burges C, and Smola A (Eds), Advances in Kernel Methods - Support Vector Learning (pp. 327-352), MIT Press, Cambridge.
- Tenenbaum JB, de Silva V, and Langford JC (2000). A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319-2323. https://doi.org/10.1126/science.290.5500.2319
- van der Maaten L and Hinton G (2008). Visualizing data using t-SNE, Journal of Machine Learning Research, 9, 2579-2605.
- Wang Y, Huang H, Rudin C, and Shaposhnik Y (2021). Understanding how dimension reduction tools work: An empirical approach to deciphering t-SNE, UMAP, TriMap, and PaCMAP for data visualization, Journal of Machine Learning Research, 22, 1-73.