본 논문에서는 고차원 대용량 자료의 시각화에서 발생할 수 있는 문제점들을 살펴보고 이에 대하여 개발된 방법들에 대하여 논의하였다. 고차원 자료의 경우 2차원 공간상에 표현하기 위하여 중요 변수를 선택해야하며 다양한 시각적 표현 속성과 다면화 방법을 이용하여 좀 더 많은 변수들을 표현할 수 있었다. 또한 관심있는 뷰를 보이는 낮은 차원을 찾는 사영추정방법을 이용할 수 있다. 대용량 자료에서는 점들이 겹쳐지는 문제점을 흩트림과 알파 블렌딩 등을 이용하여 해결할 수 있었다. 또한 고차원 대용량 자료의 탐색을 위하여 개발된 R 패키지인 tabplot과 scagnostics, 그리고 대화형 웹 그래프를 위한 다양한 형태의 R 패키지들을 살펴보았다.
Journal of the Korean Data and Information Science Society
/
제24권5호
/
pp.1063-1076
/
2013
현대 과학기술의 발전으로 빅데이터의 시대가 도래하였다, 이러한 빅데이터는 여러가지 과학적 문제에 대한 해답을 제공하지만 반면에 이로 인해 새로운 도전에 직면하고 있다. 마이크로어레이 자료와 같은 고차원자료는 이러한 빅데이터에서 흔히 볼 수 있는 유형중의 하나이다. 본 논문에서는 고차원 자료분석에 많이 쓰이고 있는 대역검정과 동시검정, 그리고 이의 응용에 대한 소개를 한다.
고차원 유전체 자료를 사용하는 유전체 연관 분석에서는 벌점 우도함수 기반의 회귀계수 규제화 방법이 질병 및 표현형질에 영향을 주는 유전자를 발견하는데 많이 이용된다. 특히, 네트워크 기반의 규제화 방법은 유전체 연관성 연구에서의 유전체 경로나 신호 전달 경로와 같은 생물학적 네트워크 정보를 사용할 수 있으므로, Lasso나 Elastic-net과 같은 다른 규제화 방법들과 비교했을 경우 네트워크 기반의 규제화 방법이 보다 더 정확하게 관련 유전자들을 찾아낼 수 있다는 장점을 가지고 있다. 그러나 네트워크 기반의 규제화 방법은 그룹 구조를 갖고 있는 고차원 유전체 자료에는 적용시킬 수 없다는 문제점을 가지고 있다. 실제 SNP 데이터와 DNA 메틸화 데이터처럼 대다수의 고차원 유전체 자료는 그룹 구조를 가지고 있으므로 본 논문에서는 이러한 그룹 구조를 가지고 있는 고차원 유전체 자료를 분석하고자 네트워크 기반의 규제화 방법에 주성분 분석(principal component analysis; PCA)과 부분 최소 자승법(partial least square; PLS)과 같은 차원 축소 방법을 결합시키는 새로운 분석 방법을 제안하고자 한다. 새롭게 제안한 분석 방법은 몇 가지의 모의실험을 통해 변수 선택의 우수성을 입증하였으며, 또한 152명의 정상인들과 123명의 난소암 환자들로 구성된 고차원 DNA 메틸화 자료 분석에도 사용하였다. DNA 메틸화 자료는 대략 20,000여개의 CpG sites가 12,770개의 유전자에 포함되어 있는 그룹 구조를 가지고 있으며 Illumina Innium uman Methylation27 BeadChip으로부터 생성되었다. 분석 결과 우리는 실제로 암에 연관된 몇 가지의 유전자를 발견할 수 있었다.
고차원 자료를 효율적으로 처리하기 위해서는 특징 추출 기법이 필요하다. 주성분분석 방법은 대표적인 특징추출 방법이지만 학습 자료의 차원이 큰 경우에는 고유공간을 계산하기 위해 많은 기억공간과 계산량을 필요로 한다. 본 논문에서는 고차원 자료의 특징 추출을 위해 점진적인 주성분분석 방법을 사용한다. 제안한 방법에 대해 신경망에서 점진적인 주성분분석을 하는 대표적인 방법인 APEX모델과 실험을 통해 비교해 본 결과 제안된 방법이 APEX 모델 보다 성능이 우수함을 나타내었다.
자기조직화지도(Self Organizing Map, SOM)는 비지도 신경망으로서 고차원의 입력공간을 위상적관계를 유지시키면서 저차원으로 사영 시킬 수 있는 특징을 갖고 있다. SOM은 패턴인 식과 자료압축/재생 등 여러 분야에서 유용하게 활용될 수 있으며 특히 고차원 자료의 시각화 방법으로 많은 관심을 받고 있다. 본 연구에서는 SOM의 quantization error를 줄이기 위한 목적으로 인공데이터를 생성시켜 학습에 이용하는 방법을 제시한다. 이는 특히 데이터가 부족한 상황에서 SOM을 학습시켜야 할 때 유용하게 적용될 수 있을 것으로 기대된다.
Journal of the Korean Data and Information Science Society
/
제28권6호
/
pp.1291-1300
/
2017
고차원 자료에서는 관측값의 개수보다 변수의 개수가 과다하게 많은 것이 특징이다. 그러므로 회귀 계수 추정에 있어 관측값의 영향이 매우 클 수 있다. Jang과 Anserson-Cook (2017)은 라쏘추정량 사용시 영향점의 영향을 평가할 수 있는 라쏘 영향그림을 제안하였다. 본 연구에서는 고차원 자료에서 영향점을 평가하기 위한 그래픽 방법들로서 라쏘 영향그림 뿐만 아니라 라쏘 변수선택 순위그림, 삼차원 라쏘 영향그림을 제안하였다. 실세 두 가지 고차원 자료 예들에 영향점들을 찾기 위한 회귀진단 수단으로서 세가지 그래픽 방법들을 사용하여 본 결과 영향점들을 효과적으로 찾아낼 수 있었다.
빅 데이터의 출현은 여러가지 과학적 난제에 대답 할 수 있는 기회를 제공하지만 흥미로운 도전을 또한 제공한다. 이러한 빅데이터의 주요 특징으로 "고차원"과 "대용량"을 들 수가 있다. 본 논문은 이러한 두 가지 특징에 동반되는 다음과 같은 도전문제에 대한 개요를 제시한다 : (1) 고차원 자료에서의 소음 축적과 위 상관 관계; (ii) 대용량 자료분석을 위한 계산 확장성. 또한 본 논문에서는 재난예측, 디지털 인문학과 세이버메트릭스 등 다양한 분야에서 빅 데이터의 다양한 응용사례를 제공한다.
본 논문에서는 고차원 희소 회귀분석을 위한 기존의 베이지안 방법들을 소개하고, 다양한 모의실험 세팅에서 성능을 비교한다. 특히, 확장 가능하고 정확한 베이지안 추론을 가능하게 하는 변분 베이즈 방법(variational Bayes method) (Ray와 Szabó, 2021) 에 중점을 둔다. 시뮬레이션 자료를 기반으로 한 희소 고차원 선형회귀분석을 실시하고 변분 베이즈 방법의 성능을 다른 베이지안 및 빈도론 방법들과 비교한다. 로지스틱 회귀분석에서 변분 베이즈 방법의 실제 성능을 확인하기 위해 백혈병 유전자 발현 자료를 사용하여 실자료 분석을 수행한다.
고차원 자료(high dimensional data)는 변수의 수가 표본의 수보다 많은 자료로 다양한 분야에서 관측 또는 생성되고 있다. 일반적으로, 고차원 자료에 대한 회귀 모형에서는 모수의 추정과 과적합을 피하기 위하여 변수 선택이 이루어진다. 벌점화 회귀 모형(penalized regression model)은 변수 선택과 회귀 계수의 추정을 동시에 수행하는 장점으로 인하여 고차원 자료에 빈번하게 적용되고 있다. 하지만, 벌점화 회귀 모형에서도 여전히 조율 모수 선택(tuning parameter selection)을 통한 최적의 모형 선택이 요구된다. 본 논문에서는 벌점화 회귀 모형 중에서 대표적인 LASSO 회귀 모형을 기반으로 모형 선택의 기준들에 대한 LASSO 회귀 추정량의 편의가 어떠한 영향을 미치는지 모의실험을 통하여 수치적으로 연구하였고 편의의 보정의 필요성에 대하여 나타내었다. 실제 자료 분석에서의 영향을 나타내기 위하여, 폐암 환자의 유전자 발현량(gene expression) 자료를 기반으로 바이오마커 식별(biomarker identification) 문제에 적용하였다.
고차원 자료에서 이상치를 탐지하기 위해서는 변수를 선별해야 할 필요성이 있다. 이상치 탐지에 적합한 정보가 종종 일부 변수에만 포함되어 있기 때문이다. 많은 수의 부적합한 변수가 자료에 포함될 경우 모든 관측치의 거리가 비슷해지는 집중효과가 발생하고 이로 인해 모든 관측치의 이상정도가 비슷해지는 문제가 발생하게 된다. 부분공간 이상치 탐지기법은 전체 변수 중 이상치 탐지에 적합한 변수들의 집합을 선별하여 관측치의 이상정도를 측정함으로써 이러한 문제를 극복한다. 본 논문은 대표적인 부분공간 이상치 탐지기법을 부분공간 선정 방식에 따라 세가지 유형으로 분류하고 각 유형에 속한 방법론을 부분공간 선정 기준과 이상 정도 측정 방식에 따라 요약한다. 더하여, 부분공간 이상치 탐지기법들을 적용할 수 있는 컴퓨팅 프로그램을 소개하고 집중효과에 대한 간단한 가상 실험과 자료 분석 결과를 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.