DOI QR코드

DOI QR Code

TLR-1, TLR-2, and TLR-6 MYD88-dependent signaling pathway: A potential factor in the interaction of high-DNA fragmentation human sperm with fallopian tube epithelial cells

  • Zahra Zandieh (Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences) ;
  • Azam Govahi (Endometriosis Research Center, Iran University of Medical Sciences) ;
  • Azin Aghamajidi (Department of Immunology, School of Medicine, Iran University of Medical Sciences) ;
  • Ehsan Raoufi (Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences) ;
  • Fatemehsadat Amjadi (Department of Anatomy, School of Medicine, Iran University of Medical Sciences) ;
  • Samaneh Aghajanpour (Department of Anatomy, School of Medicine, Iran University of Medical Sciences) ;
  • Masoomeh Golestan (Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences) ;
  • Reza Aflatoonian (Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine)
  • Received : 2022.08.15
  • Accepted : 2022.12.06
  • Published : 2023.03.31

Abstract

Objective: The DNA integrity of spermatozoa that attach to fallopian tube (FT) cells is higher than spermatozoa that do not attach. FT epithelial cells can distinguish normal and abnormal sperm chromatin. This study investigated the effects of sperm with a high-DNA fragmentation index (DFI) from men with unexplained repeated implantation failure (RIF) on the Toll-like receptor (TLR) signaling pathway in human FT cells in vitro. Methods: Ten men with a RIF history and high-DFI and 10 healthy donors with low-DFI comprised the high-DFI (>30%) and control (<30%) groups, respectively. After fresh semen preparation, sperm were co-cultured with a human FT epithelial cell line (OE-E6/E7) for 24 hours. RNA was extracted from the cell line and the human innate and adaptive immune responses were tested using an RT2 profiler polymerase chain reaction (PCR) array. Results: The PCR array data showed significantly higher TLR-1, TLR-2, TLR-3, TLR-6, interleukin 1α (IL-1α), IL-1β, IL-6, IL-12, interferon α (IFN-α), IFN-β, tumor necrosis factor α (TNF-α), CXCL8, GM-CSF, G-CSF, CD14, ELK1, IRAK1, IRAK2, IRAK4, IRF1, IRF3, LY96, MAP2K3, MAP2K4, MAP3K7, MAP4K4, MAPK8, MAPK8IP3, MYD88, NFKB1, NFKB2, REL, TIRAP, and TRAF6 expression in the high-DFI group than in the control group. These factors are all involved in the TLR-MyD88 signaling pathway. Conclusion: The MyD88-dependent pathway through TLR-1, TLR-2, and TLR-6 activation may be one of the main inflammatory pathways activated by high-DFI sperm from men with RIF. Following activation of this pathway, epithelial cells produce inflammatory cytokines, resulting in neutrophil infiltration, activation, phagocytosis, neutrophil extracellular trap formation, and apoptosis.

Keywords

Acknowledgement

The authors would like to thank the Royan Institute for Reproductive Biomedicine, Tehran, Iran for their cooperation throughout the period of the study.

References

  1. Li S, Winuthayanon W. Oviduct: roles in fertilization and early embryo development. J Endocrinol 2017;232:R1-26. https://doi.org/10.1530/JOE-16-0302
  2. Barriere P, Thibault E, Jean M. Role of Fallopian tube in fertilization. Rev Prat 2002;52:1757-61.
  3. Lyons RA, Saridogan E, Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum Reprod Update 2006;12:363-72. https://doi.org/10.1093/humupd/dml012
  4. Ochiel DO, Fahey JV, Ghosh M, Haddad SN, Wira CR. Innate immunity in the female reproductive tract: role of sex hormones in regulating uterine epithelial cell protection against pathogens. Curr Womens Health Rev 2008;4:102-17. https://doi.org/10.2174/157340408784246395
  5. Nasu K, Narahara H. Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm 2010;2010:976024.
  6. Kannaki TR, Shanmugam M, Verma PC. Toll-like receptors and their role in animal reproduction. Anim Reprod Sci 2011;125:1-12. https://doi.org/10.1016/j.anireprosci.2011.03.008
  7. Amjadi F, Zandieh Z, Salehi E, Jafari R, Ghasemi N, Aflatoonian A, et al. Variable localization of Toll-like receptors in human fallopian tube epithelial cells. Clin Exp Reprod Med 2018;45:1-9. https://doi.org/10.5653/cerm.2018.45.1.1
  8. Horne AW, Stock SJ, King AE. Innate immunity and disorders of the female reproductive tract. Reproduction 2008;135:739-49. https://doi.org/10.1530/REP-07-0564
  9. Holt WV, Fazeli A. Sperm selection in the female mammalian reproductive tract. Focus on the oviduct: hypotheses, mechanisms, and new opportunities. Theriogenology 2016;85:105-12. https://doi.org/10.1016/j.theriogenology.2015.07.019
  10. Zandieh Z, Ashrafi M, Jameie B, Amanpour S, Mosaffa N, Salman Yazdi R, et al. Evaluation of immunological interaction between spermatozoa and fallopian tube epithelial cells. Andrologia 2015;47:1120-30. https://doi.org/10.1111/and.12391
  11. Zandieh Z, Ashrafi M, Aflatoonian K, Aflatoonian R. Human sperm DNA damage has an effect on immunological interaction between spermatozoa and fallopian tube. Andrology 2019;7:228-34. https://doi.org/10.1111/andr.12574
  12. Timeva T, Shterev A, Kyurkchiev S. Recurrent implantation failure: the role of the endometrium. J Reprod Infertil 2014;15:173-83.
  13. Coughlan C, Clarke H, Cutting R, Saxton J, Waite S, Ledger W, et al. Sperm DNA fragmentation, recurrent implantation failure and recurrent miscarriage. Asian J Androl 2015;17:681-5. https://doi.org/10.4103/1008-682X.144946
  14. Rybar R, Markova P, Veznik Z, Faldikova L, Kunetkova M, Zajicova A, et al. Sperm chromatin integrity in young men with no experiences of infertility and men from idiopathic infertility couples. Andrologia 2009;41:141-9. https://doi.org/10.1111/j.1439-0272.2008.00905.x
  15. Govahi A, Amjadi F, Nasr-Esfahani MH, Raoufi E, Mehdizadeh M. Accompaniment of time-lapse parameters and cumulus cell RNA-sequencing in embryo evaluation. Reprod Sci 2022;29:395-409. https://doi.org/10.1007/s43032-021-00748-3
  16. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014;28:14-38. https://doi.org/10.1016/j.rbmo.2013.08.011
  17. Oleszczuk K, Augustinsson L, Bayat N, Giwercman A, Bungum M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology 2013;1:357-60. https://doi.org/10.1111/j.2047-2927.2012.00041.x
  18. Zandieh Z, Vatannejad A, Doosti M, Zabihzadeh S, Haddadi M, Bajelan L, et al. Comparing reactive oxygen species and DNA fragmentation in semen samples of unexplained infertile and healthy fertile men. Ir J Med Sci 2018;187:657-62. https://doi.org/10.1007/s11845-017-1708-7
  19. Asgari F, Gavahi A, Karimi M, Vatannejad A, Amjadi F, Aflatoonian R, et al. Risk of embryo aneuploidy is affected by the increase in sperm DNA damage in recurrent implantation failure patients under ICSI-CGH array cycles. Hum Fertil (Camb) 2022;25:872-80. https://doi.org/10.1080/14647273.2021.1920054
  20. Zini A, Kamal K, Phang D, Willis J, Jarvi K. Biologic variability of sperm DNA denaturation in infertile men. Urology 2001;58:258-61. https://doi.org/10.1016/S0090-4295(01)01180-3
  21. Bianchi PG, De Agostini A, Fournier J, Guidetti C, Tarozzi N, Bizzaro D, et al. Human cervical mucus can act in vitro as a selective barrier against spermatozoa carrying fragmented DNA and chromatin structural abnormalities. J Assist Reprod Genet 2004;21:97-102. https://doi.org/10.1023/B:JARG.0000029492.54243.3c
  22. Erenpreiss J, Elzanaty S, Giwercman A. Sperm DNA damage in men from infertile couples. Asian J Androl 2008;10:786-90. https://doi.org/10.1111/j.1745-7262.2008.00417.x
  23. Oleszczuk K, Giwercman A, Bungum M. Intra-individual variation of the sperm chromatin structure assay DNA fragmentation index in men from infertile couples. Hum Reprod 2011;26:3244-8. https://doi.org/10.1093/humrep/der328
  24. Gardner DK, Weissman A, Howles CM, Shoham Z. Textbook of assisted reproductive technologies: laboratory and clinical perspectives. CRC press; 2008.
  25. Ajdary M, Keyhanfar F, Aflatoonian R, Amani A, Amjadi F, Zandieh Z, et al. Design and evaluation of a novel nanodrug delivery system for reducing the side effects of clomiphene citrate on endometrium. Daru 2020;28:423-32. https://doi.org/10.1007/s40199-019-00310-2
  26. Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 2018;14(Suppl 2):49.
  27. Fukui A, Ohta K, Nishi H, Shigeishi H, Tobiume K, Takechi M, et al. Interleukin-8 and CXCL10 expression in oral keratinocytes and fibroblasts via Toll-like receptors. Microbiol Immunol 2013;57:198-206. https://doi.org/10.1111/1348-0421.12022
  28. Cheng K, Gao M, Godfroy JI, Brown PN, Kastelowitz N, Yin H. Specific activation of the TLR1-TLR2 heterodimer by small-molecule agonists. Sci Adv 2015;1:e1400139.
  29. Papathanasiou A, Djahanbakhch O, Saridogan E, Lyons RA. The effect of interleukin-6 on ciliary beat frequency in the human fallopian tube. Fertil Steril 2008;90:391-4. https://doi.org/10.1016/j.fertnstert.2007.07.1379
  30. Hvid M, Baczynska A, Deleuran B, Fedder J, Knudsen HJ, Christiansen G, et al. Interleukin-1 is the initiator of Fallopian tube destruction during Chlamydia trachomatis infection. Cell Microbiol 2007;9:2795-803. https://doi.org/10.1111/j.1462-5822.2007.00996.x
  31. Sueldo CE, Kelly E, Montoro L, Subias E, Baccaro M, Swanson JA, et al. Effect of interleukin-1 on gamete interaction and mouse embryo development. J Reprod Med 1990;35:868-72.
  32. Vassiliadis S, Relakis K, Papageorgiou A, Athanassakis I. Endometriosis and infertility: a multi-cytokine imbalance versus ovulation, fertilization and early embryo development. Clin Dev Immunol 2005;12:125-9. https://doi.org/10.1080/17402520500125484
  33. Mousavi SO, Mohammadi R, Amjadi F, Zandieh Z, Aghajanpour S, Aflatoonian K, et al. Immunological response of fallopian tube epithelial cells to spermatozoa through modulating cytokines and chemokines. J Reprod Immunol 2021;146:103327.
  34. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 2012;249:158-75. https://doi.org/10.1111/j.1600-065X.2012.01146.x
  35. Young RS, Wiles BM, McGee DW. IL-22 enhances TNF-α- and IL-1-induced CXCL8 responses by intestinal epithelial cell lines. Inflammation 2017;40:1726-34. https://doi.org/10.1007/s10753-017-0614-5
  36. Adolfsson E, Andershed AN. Morphology vs morphokinetics: a retrospective comparison of inter-observer and intra-observer agreement between embryologists on blastocysts with known implantation outcome. JBRA Assist Reprod 2018;22:228-37. https://doi.org/10.5935/1518-0557.20180042
  37. Lee SK, Kim CJ, Kim DJ, Kang JH. Immune cells in the female reproductive tract. Immune Netw 2015;15:16-26. https://doi.org/10.4110/in.2015.15.1.16
  38. Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 1994;62:387-93. https://doi.org/10.1016/S0015-0282(16)56895-2
  39. Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol 2016;12:402-13. https://doi.org/10.1038/nrneph.2016.71
  40. Desai J, Mulay SR, Nakazawa D, Anders HJ. Matters of life and death. How neutrophils die or survive along NET release and is "NETosis" = necroptosis? Cell Mol Life Sci 2016;73:2211-9. https://doi.org/10.1007/s00018-016-2195-0
  41. Zhao W, Fogg DK, Kaplan MJ. A novel image-based quantitative method for the characterization of NETosis. J Immunol Methods 2015;423:104-10. https://doi.org/10.1016/j.jim.2015.04.027
  42. Hahn S, Giaglis S, Hoesli I, Hasler P. Neutrophil NETs in reproduction: from infertility to preeclampsia and the possibility of fetal loss. Front Immunol 2012;3:362.